4.8 0 False C:\users\wouter\My Documents\studie\ma\mahd\implementation\SCARA\04_path_planning\path_planning.emx 2020-7-21 13:21:44 True parameters real A = 0.05 {m}; real B = 0.05 {m}; variables real J0_1_BF1[2]; real J1_2_BF1[2]; real J1_2_BF2[2]; real EE1_BF2[2]; initialequations J0_1_BF1 = [A/2;0]; J1_2_BF1 = [-A/2;0]; J1_2_BF2 = [B/2;0]; EE1_BF2 = [-B/2;0]; '; type Mainmodel end; implementation bg submodels C1 640 264 description '4.01False Bond Graph\3D\C-3.emx 2007-9-25 12:12:8 '; type 'C-3' ports power in p [3,1]; signal out state [3,1]; restrictions causality preferred out p; end; icon bg bottom figures text 'C' 640 264 color 0 18 bold; end; implementation eq parameters real c[3,3] = [0.1, 0.0, 0.0; 0.0, 0.1, 0.0; 0.0, 0.0, 0.1] {mN/m}; equations state = int(p.f); p.e = inverse(c) *state; implementation_end; C2 304 272 description '4.01False Bond Graph\3D\C-3.emx 2007-9-25 12:12:8 '; type 'C-3' ports power in p [3,1]; signal out state [3,1]; restrictions causality preferred out p; end; icon bg bottom figures text 'C' 304 272 color 0 18 bold; end; implementation eq parameters real c[3,3] = [0.1, 0.0, 0.0; 0.0, 0.1, 0.0; 0.0, 0.0, 0.1] {mN/m}; equations state = int(p.f); p.e = inverse(c) *state; implementation_end; C3 304 224 description '4.01False Bond Graph\2D\C-2.emx 2007-9-25 12:7:27 '; type 'C-2' ports power in p [2,1]; signal out state [2,1]; restrictions causality preferred out p; end; icon bg bottom figures text 'C' 304 224 color 0 18 bold; end; implementation eq parameters real c[2,2] = [0.1, 0.0; 0.0, 0.1] {mN.m/rad}; equations state = int(p.f); p.e = inverse(c) *state; implementation_end; C4 640 216 description '4.01False Bond Graph\2D\C-2.emx 2007-9-25 12:7:27 '; type 'C-2' ports power in p [2,1]; signal out state [2,1]; restrictions causality preferred out p; end; icon bg bottom figures text 'C' 640 216 color 0 18 bold; end; implementation eq parameters real c[2,2] = [0.1, 0.0; 0.0, 0.1] {mN.m/rad}; equations state = int(p.f); p.e = inverse(c) *state; implementation_end; COM 376 208 description '4.81Bond Graph\MR\center_of_mass_v2.emx2020-7-21 12:24:38parameters real I [3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6] {N.m.s}; real m = 0.00455 {kg};'; type Submodel ports signal in Hin [4,4]; signal out Hout [4,4]; power out p [6,1]; end; icon bg bottom figures rectangle 344 192 408 224 color 0 fill 139; text 'COM' 376 208 color 0 'Clear Sans' 16; terminals Hin 392 192 fixed; p 360 192 fixed; end; implementation bg submodels AdHi0 544 400 description '4.01False2007-9-25 12:3:3True'; type MTF ports power in p1 [6,1]; power out p2 [6,1]; signal in H [4,4]; restrictions causality constraint not_equal p1 p2; end; icon bg left figures text 'MTF' 544 400 color 0 18 bold; end; implementation eq variables real onlyRotH[4,4]; code //Only rotations with respect to the inertial system matter! onlyRotH = H; onlyRotH[1,4] = 0; onlyRotH[2,4] = 0; onlyRotH[3,4] = 0; p2.e = transpose(Adjoint(onlyRotH)) * p1.e; p1.f = Adjoint(onlyRotH) * p2.f; implementation_end; EJS 616 336 description '4.01False2007-10-31 11:43:6True'; type MGY ports power in p1 [6,1]; end; icon bg top figures text 'MGY' 616 336 color 0 18 bold; end; implementation eq //EJS / Gyroscopic effects parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Q[6,6]; real QI[6,6]; real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations Q = transpose(adjoint(p1.f)); QI = Q*II; p1.e = QI*p1.f;implementation_end; Gravity 624 400 description '4.01False2007-9-25 12:3:26True'; type Se ports power out p [6,1]; restrictions causality fixed out p; end; icon bg bottom figures text 'Se' 624 400 color 0 18 bold; end; implementation eq parameters real global m; variables real effort[6]; equations effort = [0;0;0;0;0;-g_n*m]; p.e = effort; implementation_end; InertialTensor 544 272 description '4.01False Bond Graph\3D\I-3.emx 2007-9-25 12:12:14 '; type 'I-3' ports power in p [6,1]; signal out state [6,1]; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 544 272 color 0 18 bold; end; implementation eq parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations state = int(p.e); //state = generalized momentum p.f = inverse(II)*state; implementation_end; plug Hin 433.4 496; plug Hout 691.2 496; plug p 439.4 336; Splitter1 544 496 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 540.8 492.8 547.2 499.2 color -1 fill 0; ellipse 539.7 491.7 548.3 500.3 color -1; terminals input 544 496 fixed; end; implementation eq equations collect (output) = input; implementation_end; Ta0j 544 336 description ' 4.0 1 False Bond Graph\OneJunction.emx 2007-9-27 9:51:18 True '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg bottom figures text '1' 544 336 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; ZeroJunction1 504 336 description ' 4.2 1 False Bond Graph\ZeroJunction.emx 2011-11-29 16:45:16 '; knot ZeroJunction ports power knot duplicatable none p [6,1]; signal knot out effort [6,1]; restrictions causality constraint one_in p; end; icon bg figures text '0' 504 336 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections AdHi0\p2 => Ta0j\p; Gravity\p => AdHi0\p1; Hin -> Splitter1\input; Splitter1\output -> AdHi0\H; Splitter1\output -> Hout; Ta0j\p => EJS\p1; Ta0j\p => InertialTensor\p; ZeroJunction1\p => p; ZeroJunction1\p => Ta0j\p; end; implementation_end; COM1 720 200 description '4.81Bond Graph\MR\center_of_mass_v2.emx2020-7-21 12:24:38parameters real I [3,1] = [7.583333333333335e-7; 3.645833333333334e-8; 7.364583333333335e-7] {N.m.s}; real m = 0.0035 {kg};'; type Submodel ports signal in Hin [4,4]; signal out Hout [4,4]; power out p [6,1]; end; icon bg bottom figures rectangle 688 184 752 216 color 0 fill 139; text 'COM' 720 200 color 0 'Clear Sans' 16; terminals Hin 736 184 fixed; p 704 184 fixed; end; implementation bg submodels AdHi0 544 400 description '4.01False2007-9-25 12:3:3True'; type MTF ports power in p1 [6,1]; power out p2 [6,1]; signal in H [4,4]; restrictions causality constraint not_equal p1 p2; end; icon bg left figures text 'MTF' 544 400 color 0 18 bold; end; implementation eq variables real onlyRotH[4,4]; code //Only rotations with respect to the inertial system matter! onlyRotH = H; onlyRotH[1,4] = 0; onlyRotH[2,4] = 0; onlyRotH[3,4] = 0; p2.e = transpose(Adjoint(onlyRotH)) * p1.e; p1.f = Adjoint(onlyRotH) * p2.f; implementation_end; EJS 616 336 description '4.01False2007-10-31 11:43:6True'; type MGY ports power in p1 [6,1]; end; icon bg top figures text 'MGY' 616 336 color 0 18 bold; end; implementation eq //EJS / Gyroscopic effects parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Q[6,6]; real QI[6,6]; real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations Q = transpose(adjoint(p1.f)); QI = Q*II; p1.e = QI*p1.f;implementation_end; Gravity 624 400 description '4.01False2007-9-25 12:3:26True'; type Se ports power out p [6,1]; restrictions causality fixed out p; end; icon bg bottom figures text 'Se' 624 400 color 0 18 bold; end; implementation eq parameters real global m; variables real effort[6]; equations effort = [0;0;0;0;0;-g_n*m]; p.e = effort; implementation_end; InertialTensor 544 272 description '4.01False Bond Graph\3D\I-3.emx 2007-9-25 12:12:14 '; type 'I-3' ports power in p [6,1]; signal out state [6,1]; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 544 272 color 0 18 bold; end; implementation eq parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations state = int(p.e); //state = generalized momentum p.f = inverse(II)*state; implementation_end; plug Hin 433.4 496; plug Hout 691.2 496; plug p 439.4 336; Splitter1 544 496 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 540.8 492.8 547.2 499.2 color -1 fill 0; ellipse 539.7 491.7 548.3 500.3 color -1; terminals input 544 496 fixed; end; implementation eq equations collect (output) = input; implementation_end; Ta0j 544 336 description ' 4.0 1 False Bond Graph\OneJunction.emx 2007-9-27 9:51:18 True '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg bottom figures text '1' 544 336 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; ZeroJunction1 504 336 description ' 4.2 1 False Bond Graph\ZeroJunction.emx 2011-11-29 16:45:16 '; knot ZeroJunction ports power knot duplicatable none p [6,1]; signal knot out effort [6,1]; restrictions causality constraint one_in p; end; icon bg figures text '0' 504 336 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections AdHi0\p2 => Ta0j\p; Gravity\p => AdHi0\p1; Hin -> Splitter1\input; Splitter1\output -> AdHi0\H; Splitter1\output -> Hout; Ta0j\p => EJS\p1; Ta0j\p => InertialTensor\p; ZeroJunction1\p => p; ZeroJunction1\p => Ta0j\p; end; implementation_end; COM2 904 184 description '4.81Bond Graph\MR\center_of_mass_v2.emx2020-7-21 12:24:38parameters real I [3,1] = [0.018;0.159;0.159] {mN.m.s}; real m = 0.015 {kg};'; type Submodel ports signal in Hin [4,4]; signal out Hout [4,4]; power out p [6,1]; end; icon bg bottom figures rectangle 872 168 936 200 color 0 fill 139; text 'COM' 904 184 color 0 'Clear Sans' 16; terminals Hin 920 168 fixed; p 888 168 fixed; end; implementation bg submodels AdHi0 544 400 description '4.01False2007-9-25 12:3:3True'; type MTF ports power in p1 [6,1]; power out p2 [6,1]; signal in H [4,4]; restrictions causality constraint not_equal p1 p2; end; icon bg left figures text 'MTF' 544 400 color 0 18 bold; end; implementation eq variables real onlyRotH[4,4]; code //Only rotations with respect to the inertial system matter! onlyRotH = H; onlyRotH[1,4] = 0; onlyRotH[2,4] = 0; onlyRotH[3,4] = 0; p2.e = transpose(Adjoint(onlyRotH)) * p1.e; p1.f = Adjoint(onlyRotH) * p2.f; implementation_end; EJS 616 336 description '4.01False2007-10-31 11:43:6True'; type MGY ports power in p1 [6,1]; end; icon bg top figures text 'MGY' 616 336 color 0 18 bold; end; implementation eq //EJS / Gyroscopic effects parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Q[6,6]; real QI[6,6]; real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations Q = transpose(adjoint(p1.f)); QI = Q*II; p1.e = QI*p1.f;implementation_end; Gravity 624 400 description '4.01False2007-9-25 12:3:26True'; type Se ports power out p [6,1]; restrictions causality fixed out p; end; icon bg bottom figures text 'Se' 624 400 color 0 18 bold; end; implementation eq parameters real global m; variables real effort[6]; equations effort = [0;0;0;0;0;-g_n*m]; p.e = effort; implementation_end; InertialTensor 544 272 description '4.01False Bond Graph\3D\I-3.emx 2007-9-25 12:12:14 '; type 'I-3' ports power in p [6,1]; signal out state [6,1]; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 544 272 color 0 18 bold; end; implementation eq parameters real global I[3]; real global m; variables real II[6,6]; //Inertial tensor real Ia[6]; initialequations Ia[1:3] = I; Ia[4:6] = m; II = diag(Ia); equations state = int(p.e); //state = generalized momentum p.f = inverse(II)*state; implementation_end; plug Hin 433.4 496; plug Hout 691.2 496; plug p 424 336; Splitter1 544 496 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 540.8 492.8 547.2 499.2 color -1 fill 0; ellipse 539.7 491.7 548.3 500.3 color -1; terminals input 544 496 fixed; end; implementation eq equations collect (output) = input; implementation_end; Ta0j 544 336 description ' 4.0 1 False Bond Graph\OneJunction.emx 2007-9-27 9:51:18 True '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg bottom figures text '1' 544 336 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; ZeroJunction1 480 336 description ' 4.2 1 False Bond Graph\ZeroJunction.emx 2011-11-29 16:45:16 '; knot ZeroJunction ports power knot duplicatable none p [6,1]; signal knot out effort [6,1]; restrictions causality constraint one_in p; end; icon bg figures text '0' 480 336 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections AdHi0\p2 => Ta0j\p; Gravity\p => AdHi0\p1; Hin -> Splitter1\input; Splitter1\output -> AdHi0\H; Splitter1\output -> Hout; Ta0j\p => EJS\p1; Ta0j\p => InertialTensor\p; ZeroJunction1\p => p; ZeroJunction1\p => Ta0j\p; end; implementation_end; Integrate 184 288 description ' 4.3 1 False Signal\Block Diagram\Integrate.emx 2013-3-8 14:47:42 '; type Integrate ports signal in input; signal out output; end; icon bg bottom figures rectangle 168 272 200 304 color 0 fill 15132390; text '∫' 184 288.3 color 16711680 'Lucida Sans' 21 italic; end; implementation eq parameters real initial = 0; // initial value equations output = int (input, initial); implementation_end; Integrate1 520 360 description ' 4.3 1 False Signal\Block Diagram\Integrate.emx 2013-3-8 14:47:42 '; type Integrate ports signal in input; signal out output; end; icon bg bottom figures rectangle 504 344 536 376 color 0 fill 15132390; text '∫' 520 360.3 color 16711680 'Lucida Sans' 21 italic; end; implementation eq parameters real initial = 0; // initial value equations output = int (input, initial); implementation_end; inverse_kinematics1 272 552 description ' 4.8 SCARA\inverse_kinematics_v1.emx 1 False 2020-7-10 12:26:18 False '; type 'Submodel-Equation' ports signal in input [2,1] {m} ; signal out angle1 {rad} ; signal out angle2 {rad} ; signal out a {rad} ; signal out b {rad} ; signal out c {rad} ; signal out phi {rad} ; signal out abs_angle2; end; implementation eq parameters real A_length = 0.065 {m}; // length of first arm real B_length = 0.05 {m}; // length of second arm real to_rad = 1 {rad}; variables real x {m}, y {m}; real C_length {m}; // length to x and y. equations x = input[1]; y = input[2]; phi = atan2(y, x); C_length = sqrt(x^2 + y^2); a = arccos ((B_length^2 + C_length^2 - A_length^2) / (2 * B_length * C_length)); b = arccos ((A_length^2 + C_length^2 - B_length^2) / (2 * A_length * C_length)); c = arccos ((A_length^2 + B_length^2 - C_length^2) / (2 * A_length * B_length)); angle1 = b + phi; abs_angle2 = angle1 - pi * to_rad + c; angle2 = c - pi * to_rad; implementation_end; Joint 192 120 description ' 4.8 1 Bond Graph\MR\joint-v3.emx 2020-7-21 12:08:53 '; type 'Submodel-v3' ports power in Pin [6,1]; power in Pdiff [6,1]; signal in Hin [4,4]; signal out Hout [4,4]; signal out Hdiff [4,4]; power out Pout [6,1]; end; icon bg bottom figures rectangle 168 88 216 152 color 0 fill 14745599; text 'Joint' 192 120 color 0 'Clear Sans' 16; terminals Pin 216 104 fixed; Hin 168 136 fixed; Hout 216 136 fixed; Pout 168 104 fixed; end; implementation bg submodels AdHji 424 424 description ' 4.0 1 False Bond Graph\MTF.emx 2007-9-25 12:3:3 True '; type MTF ports power out p1 [6,1]; power in p2 [6,1]; signal in H [4,4]; restrictions causality constraint not_equal p1 p2; end; icon bg bottom figures text 'MTF' 424 424 color 0 18 bold; end; implementation eq equations p2.e = transpose(Adjoint(H)) * p1.e; p1.f = Adjoint(H) * p2.f;implementation_end; FlowSensor2 184 311.9 description ' 4.2 1 False Bond Graph\FlowSensor.emx 2011-11-29 15:50:53 '; knot FlowSensor ports power knot in p1 [6,1]; power knot out p2 [6,1]; signal knot out flow [6,1]; restrictions causality constraint not_equal p1 p2; end; icon bg ellipse figures ellipse 177.1 304.8 190.9 319.1 color 0 fill 16777215; text 'f' 184 311.2 color 0; end; implementation eq equations p2.f = p1.f; p1.e = p2.e; flow = p1.f; implementation_end; Hmatrix 256 312 description '4.0Template\Submodel-Equation.emx1False2007-11-1 22:32:1False'; type 'Submodel-Equation' ports signal in flow [6,1]; signal out H [4,4]; end; icon bg figures rectangle 224 296 288 328 color 0 fill 15132390; text 'name' 256 312 color 0 'Clear Sans' 16; end; implementation eq parameters real init[4] = [1;0;0;0]; variables real q[4]; //quaternions real W[3,4]; //Quaternion Rates Matrix real R[3,3]; //Rotation Matrix real p[3]; //Position Vector real dq[4]; real Wb[3,4]; equations dq = transpose(Wb) * flow[1:3] ./ 2; q = int(dq,init); p = int(flow[4:6]); W = [-q[2], q[1], -q[4], q[3]; -q[3], q[4], q[1], -q[2]; -q[4], -q[3], q[2], q[1]]; Wb = [ -q[2], q[1], q[4], -q[3]; -q[3], -q[4], q[1], q[2]; -q[4], q[3], -q[2], q[1]]; R = [q[1]^2+q[2]^2-q[3]^2-q[4]^2, 2*(q[2]*q[3]+q[1]*q[4]), 2*(q[2]*q[4]-q[1]*q[3]); 2*(q[2]*q[3]-q[1]*q[4]), q[1]^2-q[2]^2+q[3]^2-q[4]^2, 2*(q[3]*q[4]+q[1]*q[2]); 2*(q[2]*q[4]+q[1]*q[3]), 2*(q[3]*q[4]-q[1]*q[2]), q[1]^2-q[2]^2-q[3]^2+q[4]^2]; H = homogeneous(R,p); implementation_end; MatrixMul 320 576 description ' 4.0 1 False Signal\Block Diagram\Gain.emx 2007-9-26 12:15:12 True '; type Gain ports signal in input1 [4,4]; signal out output [4,4]; signal in input2 [4,4]; end; icon bg bottom figures rectangle 304.1 560 335.9 592 color 0 fill 15132390; text 'X' 320 576 color 16711680 16 bold; end; implementation eq equations output = input2*input1; implementation_end; plug Pin 492.1 424; plug Pdiff 184 225; plug Hin 130.8 576; plug Hout 478.4 576; plug Hdiff 320 222; plug Pout 134.7 424; Splitter2 320 312 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 316.8 308.8 323.2 315.2 color -1 fill 0; ellipse 315.7 307.7 324.3 316.3 color -1; terminals input 320 312 fixed; end; implementation eq equations collect (output) = input; implementation_end; Wbai 184 424 description ' 4.0 1 False Bond Graph\ZeroJunction.emx 2007-9-27 9:51:43 True '; knot ZeroJunction ports power knot duplicatable none p [6,1]; signal knot out effort [6,1]; restrictions causality constraint one_in p; end; icon bg bottom figures text '0' 184 424 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections FlowSensor2\flow -> Hmatrix\flow; FlowSensor2\p2 => Wbai\p; Hin -> MatrixMul\input2; Hmatrix\H -> Splitter2\input; MatrixMul\output -> Hout; Pdiff => FlowSensor2\p1; Pin => AdHji\p2; Splitter2\output -> AdHji\H 424 312; Splitter2\output -> Hdiff; Splitter2\output -> MatrixMul\input1; Wbai\p <= AdHji\p1; Wbai\p => Pout; end; implementation_end; Joint1 536 120 description ' 4.8 1 Bond Graph\MR\joint-v3.emx 2020-7-21 12:08:53 '; type 'Submodel-v3' ports power in Pin [6,1]; power in Pdiff [6,1]; signal in Hin [4,4]; signal out Hout [4,4]; signal out Hdiff [4,4]; power out Pout [6,1]; end; icon bg bottom figures rectangle 512 88 560 152 color 0 fill 14745599; text 'Joint' 536 120 color 0 'Clear Sans' 16; terminals Pin 560 104 fixed; Hin 512 136 fixed; Hout 560 136 fixed; Pout 512 104 fixed; end; implementation bg submodels AdHji 424 424 description ' 4.0 1 False Bond Graph\MTF.emx 2007-9-25 12:3:3 True '; type MTF ports power out p1 [6,1]; power in p2 [6,1]; signal in H [4,4]; restrictions causality constraint not_equal p1 p2; end; icon bg bottom figures text 'MTF' 424 424 color 0 18 bold; end; implementation eq equations p2.e = transpose(Adjoint(H)) * p1.e; p1.f = Adjoint(H) * p2.f;implementation_end; FlowSensor2 184 311.9 description ' 4.2 1 False Bond Graph\FlowSensor.emx 2011-11-29 15:50:53 '; knot FlowSensor ports power knot in p1 [6,1]; power knot out p2 [6,1]; signal knot out flow [6,1]; restrictions causality constraint not_equal p1 p2; end; icon bg ellipse figures ellipse 177.1 304.8 190.9 319.1 color 0 fill 16777215; text 'f' 184 311.2 color 0; end; implementation eq equations p2.f = p1.f; p1.e = p2.e; flow = p1.f; implementation_end; Hmatrix 256 312 description '4.0Template\Submodel-Equation.emx1False2007-11-1 22:32:1False'; type 'Submodel-Equation' ports signal in flow [6,1]; signal out H [4,4]; end; icon bg figures rectangle 224 296 288 328 color 0 fill 15132390; text 'name' 256 312 color 0 'Clear Sans' 16; end; implementation eq parameters real init[4] = [1;0;0;0]; variables real q[4]; //quaternions real W[3,4]; //Quaternion Rates Matrix real R[3,3]; //Rotation Matrix real p[3]; //Position Vector real dq[4]; real Wb[3,4]; equations dq = transpose(Wb) * flow[1:3] ./ 2; q = int(dq,init); p = int(flow[4:6]); W = [-q[2], q[1], -q[4], q[3]; -q[3], q[4], q[1], -q[2]; -q[4], -q[3], q[2], q[1]]; Wb = [ -q[2], q[1], q[4], -q[3]; -q[3], -q[4], q[1], q[2]; -q[4], q[3], -q[2], q[1]]; R = [q[1]^2+q[2]^2-q[3]^2-q[4]^2, 2*(q[2]*q[3]+q[1]*q[4]), 2*(q[2]*q[4]-q[1]*q[3]); 2*(q[2]*q[3]-q[1]*q[4]), q[1]^2-q[2]^2+q[3]^2-q[4]^2, 2*(q[3]*q[4]+q[1]*q[2]); 2*(q[2]*q[4]+q[1]*q[3]), 2*(q[3]*q[4]-q[1]*q[2]), q[1]^2-q[2]^2-q[3]^2+q[4]^2]; H = homogeneous(R,p); implementation_end; MatrixMul 320 576 description ' 4.0 1 False Signal\Block Diagram\Gain.emx 2007-9-26 12:15:12 True '; type Gain ports signal in input1 [4,4]; signal out output [4,4]; signal in input2 [4,4]; end; icon bg bottom figures rectangle 304.1 560 335.9 592 color 0 fill 15132390; text 'X' 320 576 color 16711680 16 bold; end; implementation eq equations output = input2*input1; implementation_end; plug Pin 492.1 424; plug Pdiff 184 225; plug Hin 130.8 576; plug Hout 478.4 576; plug Hdiff 320 222; plug Pout 134.7 424; Splitter2 320 312 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 316.8 308.8 323.2 315.2 color -1 fill 0; ellipse 315.7 307.7 324.3 316.3 color -1; terminals input 320 312 fixed; end; implementation eq equations collect (output) = input; implementation_end; Wbai 184 424 description ' 4.0 1 False Bond Graph\ZeroJunction.emx 2007-9-27 9:51:43 True '; knot ZeroJunction ports power knot duplicatable none p [6,1]; signal knot out effort [6,1]; restrictions causality constraint one_in p; end; icon bg bottom figures text '0' 184 424 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections FlowSensor2\flow -> Hmatrix\flow; FlowSensor2\p2 => Wbai\p; Hin -> MatrixMul\input2; Hmatrix\H -> Splitter2\input; MatrixMul\output -> Hout; Pdiff => FlowSensor2\p1; Pin => AdHji\p2; Splitter2\output -> AdHji\H 424 312; Splitter2\output -> Hdiff; Splitter2\output -> MatrixMul\input1; Wbai\p <= AdHji\p1; Wbai\p => Pout; end; implementation_end; Link 288 120 description ' 4.8 Bond Graph\MR\link-v3.emx 1 False 2020-7-21 11:14:41 False '; type 'Submodel-Equation' ports signal in Hin [4,4]; signal out Hout [4,4]; power in Pin [6,1]; power out Pout [6,1]; restrictions causality constraint not_equal Pin Pout; end; icon bg bottom figures rectangle 256 96 320 144 color 0 fill 8454041; text 'Link' 288 120 color 0 'Clear Sans' 16; terminals Hin 256 136 fixed; Hout 320 136 fixed; Pin 320 104 fixed; Pout 256 104 fixed; end; implementation eq parameters real offset[6]= [0;0;0;0;0.0325;0]; //coordinates of joint_1 variables real Hab[4,4]; real AdHab[6,6]; real R[3,3]; real omega[3]; initialequations omega = offset[1:3]; R = dll('EulerAngles.dll','RotationMatrixFromEulXYZs',omega); Hab = homogeneous(R,offset[4:6]); AdHab = Adjoint(Hab); equations Hout = Hin * Hab; Pout.e = transpose(AdHab) * Pin.e; Pin.f = AdHab * Pout.f; implementation_end; Link1 456 120 description ' 4.8 Bond Graph\MR\link-v3.emx 1 False 2020-7-21 11:14:41 False '; type 'Submodel-Equation' ports signal in Hin [4,4]; signal out Hout [4,4]; power in Pin [6,1]; power out Pout [6,1]; restrictions causality constraint not_equal Pin Pout; end; icon bg bottom figures rectangle 424 96 488 144 color 0 fill 8454041; text 'Link' 456 120 color 0 'Clear Sans' 16; terminals Hin 424 136 fixed; Hout 488 136 fixed; Pin 488 104 fixed; Pout 424 104 fixed; end; implementation eq parameters real offset[6]= [0;0;0;0;0.0325;0]; //coordinates of joint_1 variables real Hab[4,4]; real AdHab[6,6]; real R[3,3]; real omega[3]; initialequations omega = offset[1:3]; R = dll('EulerAngles.dll','RotationMatrixFromEulXYZr',omega); Hab = homogeneous(R,offset[4:6]); AdHab = Adjoint(Hab); equations Hout = Hin * Hab; Pout.e = transpose(AdHab) * Pin.e; Pin.f = AdHab * Pout.f; implementation_end; Link2 624 120 description ' 4.8 Bond Graph\MR\link-v3.emx 1 False 2020-7-19 15:22:34 False '; type 'Submodel-Equation' ports signal in Hin [4,4]; signal out Hout [4,4]; power in Pin [6,1]; power out Pout [6,1]; restrictions causality constraint not_equal Pin Pout; end; icon bg bottom figures rectangle 592 96 656 144 color 0 fill 8454041; text 'Link' 624 120 color 0 'Clear Sans' 16; terminals Hin 592 136 fixed; Hout 656 136 fixed; Pin 656 104 fixed; Pout 592 104 fixed; end; implementation eq parameters real offset[3]= [0;0.025;0]; //coordinates of joint_1 variables real Hab[4,4]; real AdHab[6,6]; equations Hab = homogeneous(eye(3),offset); AdHab = Adjoint(eye(3),offset); Hout = Hin * Hab; Pout.e = transpose(AdHab) * Pin.e; Pin.f = AdHab * Pout.f; implementation_end; Link3 800 120 description ' 4.8 Bond Graph\MR\link-v3.emx 1 False 2020-7-19 15:22:34 False '; type 'Submodel-Equation' ports signal in Hin [4,4]; signal out Hout [4,4]; power in Pin [6,1]; power out Pout [6,1]; restrictions causality constraint not_equal Pin Pout; end; icon bg bottom figures rectangle 768 96 832 144 color 0 fill 8454041; text 'Link' 800 120 color 0 'Clear Sans' 16; terminals Hin 768 136 fixed; Hout 832 136 fixed; Pin 832 104 fixed; Pout 768 104 fixed; end; implementation eq parameters real offset[3]= [0;0.025;0]; //coordinates of joint_1 variables real Hab[4,4]; real AdHab[6,6]; equations Hab = homogeneous(eye(3),offset); AdHab = Adjoint(eye(3),offset); Hout = Hin * Hab; Pout.e = transpose(AdHab) * Pin.e; Pin.f = AdHab * Pout.f; implementation_end; motor_joint1 112 384 description ' 4.8 1 '; type Submodel ports signal in input; power out p2; end; implementation bg submodels Gain1 552 88 description '4.01False Signal\Block Diagram\Gain.emx 2007-9-26 12:15:12 '; type Gain ports signal in input; signal out output; end; icon bg bottom figures rectangle 536.1 72 567.9 104 color 0 fill 15132390; text 'K' 552 88 color 16711680 16 bold; end; implementation eq parameters real K = 12.0; // gain equations output = K * input; implementation_end; GY 624 208 description ' 4.2 1 False Bond Graph\GY.emx 2011-11-29 15:53:45 '; type GY ports power in p1; power out p2; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'GY' 624 208 color 0 18 bold; end; implementation eq parameters real r = 0.127; equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MSe 624 88 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports power out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 624 88 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; plug input 424 88; plug p2 624 296; OneJunction2 624 136 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 624 136 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; R 680 136 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 680 136 color 0 18 bold; end; implementation eq parameters real r = 2; equations p.e = r * p.f; implementation_end; SignalLimiter2 488 88 description '4.01False Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx 2007-9-26 12:47:40 '; type 'SignalLimiter-Limit' ports signal in input; signal out output; end; icon bg bottom figures group rectangle 472 72 504 104 color 0 fill 15132390; line 487.9 76.5 487.9 101 color 0 fill 15132390; line 475 88.2 500.7 88.2 color 0 fill 15132390; spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2; spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2; spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2; end; end; implementation eq parameters real maximum = 1; real minimum = -1; equations output = limit (input, minimum, maximum); implementation_end; end; connections Gain1\output -> MSe\effort; GY\p2 => p2; input -> SignalLimiter2\input; MSe\p => OneJunction2\p; OneJunction2\p => GY\p1; R\p <= OneJunction2\p; SignalLimiter2\output -> Gain1\input; end; implementation_end; motor_joint2 680 432 description ' 4.8 1 '; type Submodel ports signal in input; power out p2; end; implementation bg submodels Gain1 552 88 description '4.01False Signal\Block Diagram\Gain.emx 2007-9-26 12:15:12 '; type Gain ports signal in input; signal out output; end; icon bg bottom figures rectangle 536.1 72 567.9 104 color 0 fill 15132390; text 'K' 552 88 color 16711680 16 bold; end; implementation eq parameters real K = 12.0; // gain equations output = K * input; implementation_end; GY 624 200 description ' 4.2 1 False Bond Graph\GY.emx 2011-11-29 15:53:45 '; type GY ports power in p1; power out p2; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'GY' 624 200 color 0 18 bold; end; implementation eq parameters real r = 0.127; equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MSe 624 88 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports power out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 624 88 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; plug input 424 88; plug p2 624 256; OneJunction2 624 136 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 624 136 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; R 664 136 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 664 136 color 0 18 bold; end; implementation eq parameters real r = 2; equations p.e = r * p.f; implementation_end; SignalLimiter2 488 88 description '4.01False Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx 2007-9-26 12:47:40 '; type 'SignalLimiter-Limit' ports signal in input; signal out output; end; icon bg bottom figures group rectangle 472 72 504 104 color 0 fill 15132390; line 487.9 76.5 487.9 101 color 0 fill 15132390; line 475 88.2 500.7 88.2 color 0 fill 15132390; spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2; spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2; spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2; end; end; implementation eq parameters real maximum = 1; real minimum = -1; equations output = limit (input, minimum, maximum); implementation_end; end; connections Gain1\output -> MSe\effort; GY\p2 => p2; input -> SignalLimiter2\input; MSe\p => OneJunction2\p; OneJunction2\p => GY\p1; R\p <= OneJunction2\p; SignalLimiter2\output -> Gain1\input; end; implementation_end; Negate1 272 448 description '4.01False Signal\Block Diagram\Negate.emx 2007-9-26 12:14:11 '; type Negate ports signal in input; signal out output; end; icon bg bottom figures rectangle 256 432 288 464 color 0 fill 15132390; text '-1' 272 448 color 16711680 16 bold; end; implementation eq equations output = - input; implementation_end; Negate2 520 552 description '4.01False Signal\Block Diagram\Negate.emx 2007-9-26 12:14:11 '; type Negate ports signal in input; signal out output; end; icon bg bottom figures rectangle 504 536 536 568 color 0 fill 15132390; text '-1' 520 552 color 16711680 16 bold; end; implementation eq equations output = - input; implementation_end; new_joint1 376 280 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type 'Submodel-Equation' ports signal in input [4,4]; end; implementation eq variables real position[3]; real rotation[3]; real R[3,3]; equations position = input[1:3,4]; rotation = dll('EulerAngles.dll','EulXYZsFromHMatrix',input); //[input[3,2];input[1,3];input[2,1]]; R = input[1:3,1:3];implementation_end; new_joint2 720 256 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type 'Submodel-Equation' ports signal in input [4,4]; end; implementation eq variables real position[3]; real rotation[3]; real R[3,3]; equations // start typing here position = input[1:3,4]; rotation = [input[3,2];input[1,3];input[2,1]]; R = input[1:3,1:3];implementation_end; new_joint3 1016 184 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type 'Submodel-Equation' ports signal in input [4,4]; end; implementation eq variables real position[3]; real rotation[3]; real R[3,3]; equations position = input[1:3,4]; rotation = [input[3,2];input[1,3];input[2,1]]; R = input[1:3,1:3];implementation_end; OneJunction1 360 104 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 360 104 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction12 888 104 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 888 104 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction17 520 288 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 520 288 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction2 120 104 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 120 104 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction3 704 104 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [6,1]; signal knot out flow [6,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 704 104 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction4 593 232 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [2,1]; signal knot out flow [2,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 593 232 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction5 257 240 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [2,1]; signal knot out flow [2,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 257 240 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction6 257 256 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [3,1]; signal knot out flow [3,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 257 256 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction7 593 248 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [3,1]; signal knot out flow [3,1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 593 248 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; PID1 584 432 description ' 4.0 1 False Signal\Control\PID Control\Continuous\PD.emx 2008-1-17 10:49:7 '; type PD ports signal in error; signal out output; end; icon bg bottom figures rectangle 568 416 600 448 color 0 fill 15132390; text 'PD' 584.5 432.1 color 16711680 18 bold; end; implementation eq parameters real kp = 2 {}; // Proportional gain real tauD = 0.6 {s}; // Derivative time constant: tauD > 0 real beta = 0.2{}; // Tameness constant: 0 < beta << 1 variables real state, rate; equations rate = (kp * error - output) / (beta * tauD); state = int (rate); output = state + kp * error / beta; implementation_end; PID2 200 384 description ' 4.0 1 False Signal\Control\PID Control\Continuous\PD.emx 2008-1-17 10:49:7 '; type PD ports signal in error; signal out output; end; icon bg bottom figures rectangle 184 368 216 400 color 0 fill 15132390; text 'PD' 200.5 384.1 color 16711680 18 bold; end; implementation eq parameters real kp = 2 {}; // Proportional gain real tauD = 0.6 {s}; // Derivative time constant: tauD > 0 real beta = 0.2{}; // Tameness constant: 0 < beta << 1 variables real state, rate; equations rate = (kp * error - output) / (beta * tauD); state = int (rate); output = state + kp * error / beta; implementation_end; PlusMinus4 272 384 description '4.01False Signal\Block Diagram\PlusMinus.emx 2007-9-27 10:15:13 '; knot PlusMinus ports signal knot duplicatable in plus [1]; signal knot duplicatable in minus [1]; signal knot out output [1]; end; icon bg ellipse figures ellipse 264 376 280 392 color 0 fill 16777215; end; implementation eq equations output = sum (collect (plus)) - sum (collect (minus)); implementation_end; PlusMinus5 520 432 description '4.01False Signal\Block Diagram\PlusMinus.emx 2007-9-27 10:15:13 '; knot PlusMinus ports signal knot duplicatable in plus [1]; signal knot duplicatable in minus [1]; signal knot out output [1]; end; icon bg ellipse figures ellipse 512 424 528 440 color 0 fill 16777215; end; implementation eq equations output = sum (collect (plus)) - sum (collect (minus)); implementation_end; PowerMux 192 214 specifications active 'rot_x' specification 'rot_x' description ' 4.8 Bond Graph\MR\PowerMux-Rotation.emx 2020-7-20 14:35:23 1 False True '; type 'PowerMux-Rotation' ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; causality constraint not_equal input_rot2 output; causality constraint not_equal input_pos3 output; end; icon bg bottom figures line 168 216 216 216 color 0 width 2; rectangle 168 208 216 220 color -1; text '1' 186 211 color 8421504 8; terminals input 176 216 fixed; output 192 216 fixed; input_rot2 208 216 fixed; input_pos3 192 216 fixed; end; implementation eq equations output.e[1] = input.e; output.e[2:3] = input_rot2.e; output.e[4:6] = input_pos3.e; output.f[1] = input.f; output.f[2:3] = input_rot2.f; output.f[4:6] = input_pos3.f;implementation_end; specification_end; specification 'rot_y' description ' 4.1 Bond Graph\PowerMux.emx 2011-3-4 15:12:50 1 False True '; type PowerMux ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; end; icon bg bottom figures line 808 216 808 264 color 0 width 2; rectangle 804 216 816 264 color -1; text '1' 813 234 color 8421504 8; terminals input 808 224 fixed; output 808 240 fixed; input_rot2 808 256 fixed; input_pos3 808 240 fixed; end; implementation eq equations output.e[1] = input_rot2.e[1]; output.e[2] = input.e; output.e[3] = input_rot2.e[2]; output.e[4:6] = input_pos3.e; output.f[1] = input_rot2.f[1]; output.f[2] = input.f; output.f[3] = input_rot2.f[2]; output.f[4:6] = input_pos3.f;implementation_end; specification_end; specification 'rot_z' description ' 4.1 Bond Graph\PowerMux.emx 2011-3-4 15:12:50 1 False True '; type PowerMux ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; end; icon bg bottom figures line 808 216 808 264 color 0 width 2; rectangle 804 216 816 264 color -1; text '1' 813 234 color 8421504 8; terminals input 808 224 fixed; output 808 240 fixed; input_rot2 808 256 fixed; input_pos3 808 240 fixed; end; implementation eq equations output.e[3] = input.e; output.e[1:2] = input_rot2.e; output.e[4:6] = input_pos3.e; output.f[3] = input.f; output.f[1:2] = input_rot2.f; output.f[4:6] = input_pos3.f;implementation_end; specification_end; end; PowerMux1 536 206 specifications active 'rot_x' specification 'rot_x' description ' 4.8 Bond Graph\MR\PowerMux-Rotation.emx 2020-7-20 14:35:23 1 False True '; type 'PowerMux-Rotation' ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; causality constraint not_equal input_rot2 output; causality constraint not_equal input_pos3 output; end; icon bg bottom figures line 512 208 560 208 color 0 width 2; rectangle 512 200 560 212 color -1; text '1' 530 203 color 8421504 8; terminals input 520 208 fixed; output 536 208 fixed; input_rot2 552 208 fixed; input_pos3 536 208 fixed; end; implementation eq equations output.e[1] = input.e; output.e[2:3] = input_rot2.e; output.e[4:6] = input_pos3.e; output.f[1] = input.f; output.f[2:3] = input_rot2.f; output.f[4:6] = input_pos3.f;implementation_end; specification_end; specification 'rot_y' description ' 4.1 Bond Graph\PowerMux.emx 2011-3-4 15:12:50 1 False True '; type PowerMux ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; end; icon bg bottom figures line 808 216 808 264 color 0 width 2; rectangle 804 216 816 264 color -1; text '1' 813 234 color 8421504 8; terminals input 808 224 fixed; output 808 240 fixed; input_rot2 808 256 fixed; input_pos3 808 240 fixed; end; implementation eq equations output.e[1] = input_rot2.e[1]; output.e[2] = input.e; output.e[3] = input_rot2.e[2]; output.e[4:6] = input_pos3.e; output.f[1] = input_rot2.f[1]; output.f[2] = input.f; output.f[3] = input_rot2.f[2]; output.f[4:6] = input_pos3.f;implementation_end; specification_end; specification 'rot_z' description ' 4.1 Bond Graph\PowerMux.emx 2011-3-4 15:12:50 1 False True '; type PowerMux ports power in input; power out output [6,1]; power in input_rot2 [2,1]; power in input_pos3 [3,1]; restrictions causality constraint not_equal input output; end; icon bg bottom figures line 808 216 808 264 color 0 width 2; rectangle 804 216 816 264 color -1; text '1' 813 234 color 8421504 8; terminals input 808 224 fixed; output 808 240 fixed; input_rot2 808 256 fixed; input_pos3 808 240 fixed; end; implementation eq equations output.e[3] = input.e; output.e[1:2] = input_rot2.e; output.e[4:6] = input_pos3.e; output.f[3] = input.f; output.f[1:2] = input_rot2.f; output.f[4:6] = input_pos3.f;implementation_end; specification_end; end; R1 472 288 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 472 288 color 0 18 bold; end; implementation eq parameters real r = 0.0001; equations p.e = r * p.f; implementation_end; R2 257 184 description '4.01False Bond Graph\2D\R-2.emx 2007-9-25 12:6:54 '; type 'R-2' ports power in p [2,1]; end; icon bg bottom figures text 'R' 257 184 color 0 18 bold; end; implementation eq parameters real r[2,2] = [1.0, 0.0; 0.0, 1.0] {kN.m.s/rad}; equations p.e = r * p.f; implementation_end; R3 257 312 description '4.01False Bond Graph\3D\R-3.emx 2007-9-25 12:11:54 '; type 'R-3' ports power in p [3,1]; end; icon bg bottom figures text 'R' 257 312 color 0 18 bold; end; implementation eq parameters real r[3,3] = [1.0, 0.0, 0.0; 0.0, 1.0, 0.0; 0.0, 0.0, 1.0] {kN.s/m}; equations p.e = r * p.f; implementation_end; R4 593 176 description '4.01False Bond Graph\2D\R-2.emx 2007-9-25 12:6:54 '; type 'R-2' ports power in p [2,1]; end; icon bg bottom figures text 'R' 593 176 color 0 18 bold; end; implementation eq parameters real r[2,2] = [1.0, 0.0; 0.0, 1.0] {kN.m.s/rad}; equations p.e = r * p.f; implementation_end; R5 593 304 description '4.01False Bond Graph\3D\R-3.emx 2007-9-25 12:11:54 '; type 'R-3' ports power in p [3,1]; end; icon bg bottom figures text 'R' 593 304 color 0 18 bold; end; implementation eq parameters real r[3,3] = [1.0, 0.0, 0.0; 0.0, 1.0, 0.0; 0.0, 0.0, 1.0] {kN.s/m}; equations p.e = r * p.f; implementation_end; R7 56 288 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 56 288 color 0 18 bold; end; implementation eq parameters real r = 0.0001; equations p.e = r * p.f; implementation_end; rectanglepath 104 552 description ' 4.8 setpoint\rectanglepath.emx 1 False 2020-7-10 12:30:38 False '; type 'Submodel-Equation' ports signal out output [2,1]; end; implementation eq /* This will generate coordinates for the box that has to be drawn */ parameters real w = 0.07{m} ; real h = 0.05 {m}; real t = 0.5 {s}; real origin[2] = [0.01,0.03]{m}; variables real v {m/s}; real t_w {s}; real t_h {s}; real period {s}; initialequations v = (2*w + 2*h)/t; t_w = w / v; t_h = h / v; equations period = floor(time / t) * t; output[1] = v*(ramp(period+t_h) - ramp(period + t_w+t_h) - ramp(period + t_w + t_h + t_h)) + origin[1]; output[2] = v*(ramp(period) - ramp(period + t_h) - ramp(period + t_h + t_w) + ramp(period + 2 * t_h + t_w))+ origin[2]; implementation_end; rectanglepath1 272 656 description ' 4.8 setpoint\rectanglepath.emx 1 False 2020-7-10 12:30:38 False '; type 'Submodel-Equation' ports signal out output [2,1]; end; icon bg figures rectangle 216 640 328 672 color 0 fill 15132390; text 'name' 272 656 color 0 'Clear Sans' 16; end; implementation eq /* This will generate coordinates for the box that has to be drawn */ parameters real w = 0.07{m} ; real h = 0.05 {m}; real t = 0.5 {s}; real origin[2] = [0.01,0.03]{m}; variables real v {m/s}; real t_w {s}; real t_h {s}; real period {s}; boolean y; initialequations v = (2*w + 2*h)/t; t_w = w / v; t_h = h / v; code y = frequencyevent (t,0); period = time - floor(time / t) * t; if period < t_w or time < 2 then output = origin; else if period < t_w + t_h then output = origin + [w;0]; else if period < 2 * t_w + t_h then output = origin + [w;h]; else output = origin + [0;h]; end; end; end; //output[1] = v*(ramp(period+t_h) - ramp(period + t_w+t_h) - ramp(period + t_w + t_h + t_h)) + origin[1]; //output[2] = v*(ramp(period) - ramp(period + t_h) - ramp(period + t_h + t_w) + ramp(period + 2 * t_h + t_w))+ origin[2]; implementation_end; Sf2 64 104 description '4.01False Bond Graph\2D\Sf-2.emx 2007-9-25 12:7:5 '; type 'Sf-2' ports power out p [6,1]; restrictions causality fixed in p; end; icon bg bottom figures text 'Sf' 64 104 color 0 18 bold; end; implementation eq parameters real flow[6,1] = 0; variables real effort [6]; equations p.f = flow; effort = p.e; implementation_end; Splitter1 392 136 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 388.8 132.8 395.2 139.2 color -1 fill 0; ellipse 387.7 131.7 396.3 140.3 color -1; terminals input 392 136 fixed; end; implementation eq equations collect (output) = input; implementation_end; Splitter2 736 136 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [4,4]; signal knot in input [4,4]; end; icon bg ellipse figures ellipse 732.8 132.8 739.2 139.2 color -1 fill 0; ellipse 731.7 131.7 740.3 140.3 color -1; terminals input 736 136 fixed; end; implementation eq equations collect (output) = input; implementation_end; Zero 112 136 description '4.01False Signal\Sources\Zero.emx 2007-9-27 15:54:36 '; type Zero ports signal out output [4,4]; end; icon bg bottom figures rectangle 96.1 120 127.9 152 color 0 fill 15132390; text '0' 112 136 color 16711680 18 bold; end; implementation eq equations output = eye(4);implementation_end; ZeroJunction1 112 328 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 112 328 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; ZeroJunction2 656 368 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 656 368 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; ZeroJunction7 112 288 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports power knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 112 288 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; end; connections C1\p <= OneJunction7\p; C2\p <= OneJunction6\p; COM\Hout -> new_joint1\input; COM1\Hout -> new_joint2\input; COM2\Hin <- Link3\Hout 920 136; COM2\Hout -> new_joint3\input; COM2\p => OneJunction12\p; Integrate\input <- ZeroJunction7\flow; Integrate\output -> PlusMinus4\minus; Integrate1\output -> PlusMinus5\minus; inverse_kinematics1\angle1 -> Negate1\input; inverse_kinematics1\angle2 -> Negate2\input; Joint\Hout -> Link\Hin; Joint\Pdiff <= PowerMux\output; Joint\Pin <= Link\Pout; Joint\Pout => OneJunction2\p; Link\Pin <= OneJunction1\p; Link1\Hout -> Joint1\Hin; Link1\Pin <= Joint1\Pout; Link1\Pout => OneJunction1\p; Link2\Hin <- Joint1\Hout; Link2\Hout -> Splitter2\input; Link2\Pin <= OneJunction3\p; Link2\Pout => Joint1\Pin; Link3\Pin <= OneJunction12\p; Link3\Pout => OneJunction3\p; motor_joint1\p2 => ZeroJunction1\p; motor_joint2\p2 => ZeroJunction2\p; Negate1\output -> PlusMinus4\plus; Negate2\output -> PlusMinus5\plus; OneJunction1\p <= COM\p; OneJunction17\flow -> Integrate1\input; OneJunction3\p <= COM1\p; OneJunction4\p => C4\p; OneJunction4\p => R4\p; OneJunction5\p => C3\p; OneJunction5\p => R2\p; OneJunction6\p => R3\p; OneJunction7\p => R5\p; PID1\error <- PlusMinus5\output; PID1\output -> motor_joint2\input; PID2\output -> motor_joint1\input; PlusMinus4\output -> PID2\error; PowerMux\input_pos3 <= OneJunction6\p; PowerMux\input_rot2 <= OneJunction5\p; PowerMux1\input <= OneJunction17\p; PowerMux1\input_pos3 <= OneJunction7\p; PowerMux1\input_rot2 <= OneJunction4\p; PowerMux1\output => Joint1\Pdiff; R1\p <= OneJunction17\p; R7\p <= ZeroJunction7\p; rectanglepath1\output -> inverse_kinematics1\input; Sf2\p => OneJunction2\p; Splitter1\input <- Link\Hout; Splitter1\output -> COM\Hin; Splitter1\output -> Link1\Hin; Splitter2\output -> COM1\Hin; Splitter2\output -> Link3\Hin; Zero\output -> Joint\Hin; ZeroJunction1\p => ZeroJunction7\p; ZeroJunction2\p => OneJunction17\p; ZeroJunction7\p => PowerMux\input; end; implementation_end; ]]> Experiment 1 4.8 C1\state_initial 3 1 0 0 0 C2\state_initial 3 1 0 0 0 C3\state_initial 2 1 0 0 C4\state_initial 2 1 0 0 COM1\InertialTensor\state_initial 6 1 0 0 0 0 0 0 COM\InertialTensor\state_initial 6 1 0 0 0 0 0 0 Joint1\Hmatrix\p_initial 3 1 0 0 0 Joint\Hmatrix\p_initial 3 1 0 0 0 PID1\state_initial 0 PID2\state_initial 0 COM2\InertialTensor\p.e_initial 6 1 0 0 0 0 0 0 time new_joint1\position[1] new_joint1\position[2] new_joint1\position[3] new_joint1\R[1,3] new_joint1\R[2,3] new_joint1\R[3,3] new_joint1\R[1,2] new_joint1\R[2,2] new_joint1\R[3,2] new_joint2\R[1,3] new_joint2\R[2,3] new_joint2\R[3,3] new_joint2\R[1,2] new_joint2\R[2,2] new_joint2\R[3,2] new_joint2\position[1] new_joint2\position[2] new_joint2\position[3] new_joint3\position[3] new_joint3\position[2] rectanglepath1\output[2] rectanglepath1\output[1] Integrate1\output motor_joint2\SignalLimiter2\output Submodel3\dimension[1] Submodel3\dimension[2] Submodel3\dimension[3] Submodel4\dimension[1] Submodel4\dimension[2] Submodel4\dimension[3] Step\output motor_joint1\p2.e motor_joint2\p2.e D3DPlot 1 false 16777215 true 3D Animation 137 true false 4294967295 Gradients\BlueWhite.png true 1.0 1.0 1 1 1 true Reference Frame Bryant false false false false false false 1 1 1 false Default Lights and Cameras Bryant false false false false false false false Ambient 1 1 Direct3D false false false false false false 0 0.3 0.3 0.3 1 1 1 true 0.3 0.3 0.3 1 1 1 true true false false false Parallel -3 5 3 0.457495710997814 -0.762492851663023 -0.457495710997814 0.235379601434674 -0.392299335724456 0.889211827642101 Direct3D false false false false false false 3 0.5 0.5 0.5 1 1 1 true 1.0 0.0 0.0 0.5 0.5 0.5 1 1 1 true 0.5 0.5 0.5 1 1 1 true false true true false Spot Light 1 -3 -5 1 0.50709255283711 0.845154254728517 -0.169030850945703 0.0869656553478673 0.144942758913112 0.985610760609162 Direct3D false false false false false false 2 0.5 0.5 0.5 1 1 1 true 1.0 0.05 0.05 1.0471975511965976 1.0471975511965976 0.0 0.5 0.5 0.5 1 1 1 true 0.5 0.5 0.5 1 1 1 true false true true false Spot Light 2 2 -3 -1 -0.534522483824849 0.801783725737273 0.267261241912424 0.14824986333222 -0.22237479499833 0.963624111659432 Direct3D false false false false false false 2 1 1 1 1 1 1 true 1.0 0.05 0.05 1.5707963267948966 1.5707963267948966 0.0 1 1 1 1 1 1 true 0.5 0.5 0.5 1 1 1 true false true true false Camera Looking at Origin 3.04292494817788 -0.198158420944799 2.86669745787175 -0.727053165168863 0.0473464543511176 -0.684946719298893 -0.6834989786941 0.0445101606651552 0.728593159260835 Direct3D false false false false false false 0.01 100.0 true 0.003926990816987242 45.0 -10.0 10.0 10.0 -10.0 true -9.99200722162641e-016 1.76247905159244e-015 -3.05678199886544e-015 true 1 true true true false Front(XY)-Camera 10 -1 1 Direct3D false false false false false false 0.01 100.0 true 9.999999999999998 45.0 -9.999999999999998 9.999999999999998 9.999999999999998 -9.999999999999998 true true 1 true false false false Side(YZ)-Camera 10 -1 1 Direct3D false false false false false false 0.01 100.0 true 9.999999999999998 45.0 -9.999999999999998 9.999999999999998 9.999999999999998 -9.999999999999998 true true 1 true false false false Top(XZ)-Camera 10 -1 1 Direct3D false false false false false false 0.01 100.0 true 9.999999999999998 45.0 -9.999999999999998 9.999999999999998 9.999999999999998 -9.999999999999998 true true 1 true false false 1 1 1 false Scenery Bryant false false false false false false 10 10 10 false Reference Frame Bryant false false false false false false
Center
1.0 true 4 Submodel3\dimension[1] 0.005 Submodel3\dimension[2] 0.065 Submodel3\dimension[3] 0.01 true 1 1 1 1.0 1 1 1 true 0.498039215686275 0.498039215686275 0.498039215686275 14.298713684082 false false Block new_joint1\position[1] 0.0 new_joint1\position[2] 0.020422348089028722 new_joint1\position[3] 0.025208246380074812 new_joint1\R[1,3] 0.0 new_joint1\R[2,3] -0.7784945324835847 new_joint1\R[3,3] 0.6276513864345118 new_joint1\R[1,2] 0.0 new_joint1\R[2,2] 0.6276513864345118 new_joint1\R[3,2] 0.7784945324835847 Matrix false false false false false false
Center
1.0 true 4 Submodel4\dimension[1] 0.005 Submodel4\dimension[2] 0.05 Submodel4\dimension[3] 0.01 true 1 1 1 1.0 1 1 1 true 0.5 0.5 0.5 15 false false Block new_joint2\position[1] 0.0 new_joint2\position[2] 0.06513631397406291 new_joint2\position[3] 0.05636470076043039 new_joint2\R[1,3] 0.0 new_joint2\R[2,3] -0.23653295603011926 new_joint2\R[3,3] 0.971623466529938 new_joint2\R[1,2] 0.0 new_joint2\R[2,2] 0.971623466529938 new_joint2\R[3,2] 0.23653295603011926 Matrix false false false false false false
GraphPlot 2 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 model(2) true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false -0.04000000000000001 0.15999999999999998 true 1 -0.06 0.14 true 1 -0.06 0.14 true 1 3355111 1 3355111 0 true 1 1 1 true true new_joint3\position[2] true new_joint3\position[3] 6076255 1 6076255 0 true 1 1 1 true true rectanglepath1\output[1] true rectanglepath1\output[2] true 0 16777215 GraphPlot 3 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 Plot true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false 0.0 3.0 true 3 -2.5 2.5 true 1 0.0 5.71937518881079 true 1 3355111 1 3355111 0 true 1 1 1 true true time true motor_joint1\p2.e 6076255 1 6076255 0 true 1 1 1 true true time true motor_joint2\p2.e true 0 16777215 GraphPlot 4 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 model true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false 0.8 1.5 true 0 -2.5 2.5 true 1 -2.5 2.5 true 1 -2.5 2.5 true 1 3355111 1 3355111 0 true 1 1 1 true true time true Step\output 6076255 1 6076255 0 true 1 1 1 true true time true Integrate1\output -1.0 12553035 1 12553035 0 true 1 1 1 true true time true motor_joint2\SignalLimiter2\output true 0.9365808823529411 0.0811764705882353 0 16777215
1 true Window 1 0 2 4 Base 2 true Window 2 0 1 Base 3 true Window 3 0 3 Base 0.0651042 0.0583333 0.876042 0.85 0.130729 0.0842593 0.846354 0.864815 0.109896 0.175926 0.50625 0.613889
0.0 3.0 false false false false 0.1 1.0e-6 1.0e-7 false true Euler 0.01 false BackwardEuler 1.0e-5 1.0e-5 1.0e-5 1.0e-5 0.01 1.0 AdamsBashforth 0.01 false RungeKutta2 0.01 false RungeKutta4 0.01 false RungeKutta8 false 0.0 false 0.0 1.0e-6 1.0e-6 0.9 0.33 6.0 0.0 false 100000 false 1000 RungeKuttaFehlberg false 0.0 false 0.0 1.0e-6 1.0e-6 VodeAdams false 0.0 false 0.0 1.0e-6 1.0e-6 true true BDFMethod 1.0e-5 1.0e-5 1.0e-5 1.0e-5 false 0.0 false 0.0 MeBDFiMethod 1.0e-5 1.0e-5 1.0e-5 1.0e-5 false 0.0 false 0.0 8 10 false true true false true 0 0.0 true MultipleRun true UseEndValue 0.001 BroydonFletcherGoldfarbShanno true true true true false 1.0