4.8 1 Motor\stepper_model.emx 2020-7-22 15:25:37 parameters real I_phase = 3.4 {mH}; real R_phase = 2.9 {ohm}; real u_max = 3.4 {V}; real RotorInertia = 5.6e-6 {kg.m2}; real StepperMass = 0.29 {kg}; real angle_step = 1.8 {deg}; real n_phase = 2 {none}; real fluxLinkage = 0.0022 {Wb}; real detentTorque = 0.01 {N.m}; variables real omega; real p; // rotor division initialequations p = 2 * pi / (2 * n_phase * angle_step); omega = 200; '; type Submodel ports signal in angle; rotation out p; end; implementation bg submodels I 560 104 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 560 104 color 0 18 bold; end; implementation eq parameters real global I_phase; equations state = int(p.e); p.f = state / I_phase; implementation_end; I1 608 328 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 608 328 color 0 18 bold; end; implementation eq parameters real global I_phase; equations state = int(p.e); p.f = state / I_phase; implementation_end; I2 752 160 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 752 160 color 0 18 bold; end; implementation eq parameters real i = 8e-5 {kg.m2}; real global RotorInertia; equations state = int(p.e); p.f = state / (RotorInertia); implementation_end; MGY_a 656 160 description ' 4.2 1 False Bond Graph\MGY.emx 2011-11-29 16:03:53 '; type MGY ports power in p1; power out p2; signal in r; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'MGY' 656 160 color 0 18 bold; end; implementation eq equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MGY_b 656 272 description ' 4.2 1 False Bond Graph\MGY.emx 2011-11-29 16:03:53 '; type MGY ports power in p1; power out p2; signal in r; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'MGY' 656 272 color 0 18 bold; end; implementation eq equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MSe_a 512 160 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports electric out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 512 160 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; MSe_b 512 272 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports electric out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 512 272 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; plug angle 200 216; plug p 1472 216; OneJunction1 840 216 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 840 216 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction2 584 160 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports electric knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 584 160 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction3 584 272 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports electric knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 584 272 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction4 752 216 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 752 216 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; phase_control 512 216 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type Submodel ports signal in angle; signal out a; signal out b; end; icon bg figures rectangle 472 200 552 232 color 0 fill 15132390; text 'name' 512 216 color 0 'Clear Sans' 16; end; implementation eq parameters real global u_max {V}; real global angle_step; real max_a {m/s2}; variables real current_angle; real c,s; real global p; boolean hidden eventa, eventb; equations a = u_max * (cos (p*angle)); eventa = event(a); b = u_max * -(sin (p*angle)); eventb = event(b); current_angle = angle; implementation_end; R 608 104 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 608 104 color 0 18 bold; end; implementation eq parameters real global R_phase; equations p.e = R_phase * p.f; implementation_end; R1 560 328 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 560 328 color 0 18 bold; end; implementation eq parameters real global R_phase; equations p.e = R_phase * p.f; implementation_end; R2 824 264 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 824 264 color 0 18 bold; end; implementation eq parameters real r = 1.0e-3; equations p.e = r * p.f; implementation_end; RotorAngle 656 216 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type Submodel ports signal out output_b; signal out output_a; signal in omega {rad/s} ; signal out output_d; end; icon bg figures rectangle 616 200 696 232 color 0 fill 15132390; text 'name' 656 216 color 0 'Clear Sans' 16; end; implementation eq parameters real global fluxLinkage; real global detentTorque; variables real global p; real angle {rad}; equations angle = int(omega); output_a = -p * fluxLinkage * sin(p * angle); output_b = p * fluxLinkage * sin(p * angle - pi / 2); output_d = detentTorque * sin(2 * p * angle); implementation_end; Se 752 272 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports power out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 752 272 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; end; connections angle -> phase_control\angle; I2\p <= OneJunction4\p; MGY_a\p2 => OneJunction4\p; MGY_b\p2 => OneJunction4\p; MSe_b\p => OneJunction3\p; OneJunction1\p => p; OneJunction2\p <= MSe_a\p; OneJunction2\p => I\p; OneJunction2\p => MGY_a\p1; OneJunction2\p => R\p; OneJunction3\p => I1\p; OneJunction3\p => MGY_b\p1; OneJunction3\p => R1\p; OneJunction4\flow -> RotorAngle\omega; OneJunction4\p => OneJunction1\p; OneJunction4\p => R2\p; phase_control\a -> MSe_a\effort; phase_control\b -> MSe_b\effort; RotorAngle\output_a -> MGY_a\r; RotorAngle\output_b -> MGY_b\r; RotorAngle\output_d -> Se\effort; Se\p => OneJunction4\p; end; implementation_end; ]]>