4.8 0 False Motor\stepper_103H5208.emx 2020-7-22 15:08:02 '; type Mainmodel end; implementation bg submodels C 976 392 description ' 4.2 1 False Bond Graph\C.emx 2011-11-29 15:58:35 '; type C ports power in p; signal out state; restrictions causality preferred out p; end; icon bg bottom figures text 'C' 976 392 color 0 18 bold; end; implementation eq parameters real c = 0.00001; equations state = int(p.f); p.e = state / c; implementation_end; Cycloid 184 224 description '4.01False Signal\Sources\SignalGenerator-Cycloid.emx 2007-9-27 16:0:53 '; type 'SignalGenerator-Cycloid' ports signal out output; end; icon bg bottom figures rectangle 168 208 200 240 color 0 fill 15132390; line 170.9 232 197.1 232 color 0; line 173.1 216 173.1 234.2 color 0; spline 173 232 177.8 230.1 184.2 220.8 196.3 218.7 color 16711680 fill 15132390; line 193.8 232 193.8 218.7 color 0 fill 15132390 dotted; end; implementation eq parameters real amplitude = 3.1415 {none}; real start_time = 1.0 {s}; real stop_time = 1.3{s}; variables real hidden tDelta, cycl; boolean hidden change; equations "calculate at least at the start and stop time" change = timeevent (start_time) or timeevent (stop_time); "calculate the cycliod signal" tDelta = 2 * pi * (time - start_time) / (stop_time - start_time); cycl = amplitude * (tDelta - sin (tDelta)) / twopi; output = if tDelta < 0.0 then 0 else if tDelta >= 0.0 and tDelta <= twopi then cycl else amplitude end end; implementation_end; I2 1024 272 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 1024 272 color 0 18 bold; end; implementation eq parameters real i = 8e-5 {kg.m2}; equations state = int(p.e); p.f = state / i; implementation_end; Integrate 656 336 description ' 4.3 1 False Signal\Block Diagram\Integrate.emx 2013-3-8 14:47:42 '; type Integrate ports signal in input; signal out output; end; icon bg bottom figures rectangle 640 320 672 352 color 0 fill 15132390; text '∫' 656 336.3 color 16711680 'Lucida Sans' 21 italic; end; implementation eq parameters real initial = 0; // initial value equations output = int (input, initial); implementation_end; Integrate1 720 336 description ' 4.3 1 False Signal\Block Diagram\Integrate.emx 2013-3-8 14:47:42 '; type Integrate ports signal in input; signal out output; end; icon bg bottom figures rectangle 704 320 736 352 color 0 fill 15132390; text '∫' 720 336.3 color 16711680 'Lucida Sans' 21 italic; end; implementation eq parameters real initial = 0; // initial value equations output = int (input, initial); implementation_end; OneJunction 1024 336 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 1024 336 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction1 936 392 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 936 392 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; PD 568 336 description ' 4.0 1 False Signal\Control\PID Control\Continuous\PD.emx 2008-1-17 10:49:7 '; type PD ports signal in error; signal out output; end; icon bg bottom figures rectangle 552 320 584 352 color 0 fill 15132390; text 'PD' 568.5 336.1 color 16711680 18 bold; end; implementation eq parameters real kp = 6 {}; // Proportional gain real tauD = 7.5 {s}; // Derivative time constant: tauD > 0 real beta = 0.4 {}; // Tameness constant: 0 < beta << 1 real maximum = 100; variables real state, rate; equations rate = (kp * error - output) / (beta * tauD); state = int (rate); output = state + kp * error / beta; implementation_end; PD1 432 336 description ' 4.0 1 False Signal\Control\PID Control\Continuous\PD.emx 2008-1-17 10:49:7 '; type PD ports signal in error; signal out output; end; icon bg bottom figures rectangle 416 320 448 352 color 0 fill 15132390; text 'PD' 432.5 336.1 color 16711680 18 bold; end; implementation eq parameters real kp = 3 {}; // Proportional gain real tauD = 50 {s}; // Derivative time constant: tauD > 0 real beta = 0.4 {}; // Tameness constant: 0 < beta << 1 real maximum = 25; variables real state, rate; equations rate = (kp * error - output) / (beta * tauD); state = int (rate); output = state + kp * error / beta; implementation_end; PlusMinus1 392 336 description '4.01False Signal\Block Diagram\PlusMinus.emx 2007-9-27 10:15:13 '; knot PlusMinus ports signal knot duplicatable in plus [1]; signal knot duplicatable in minus [1]; signal knot out output [1]; end; icon bg ellipse figures ellipse 384 328 400 344 color 0 fill 16777215; end; implementation eq equations output = sum (collect (plus)) - sum (collect (minus)); implementation_end; PlusMinus2 528 336 description '4.01False Signal\Block Diagram\PlusMinus.emx 2007-9-27 10:15:13 '; knot PlusMinus ports signal knot duplicatable in plus [1]; signal knot duplicatable in minus [1]; signal knot out output [1]; end; icon bg ellipse figures ellipse 520 328 536 344 color 0 fill 16777215; end; implementation eq equations output = sum (collect (plus)) - sum (collect (minus)); implementation_end; R 896 392 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 896 392 color 0 18 bold; end; implementation eq parameters real r = 100; equations p.e = r * p.f; implementation_end; SignalLimiter1 480 336 description '4.01False Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx 2007-9-26 12:47:40 '; type 'SignalLimiter-Limit' ports signal in input; signal out output; end; icon bg bottom figures group rectangle 464 320 496 352 color 0 fill 15132390; line 479.9 324.5 479.9 349 color 0 fill 15132390; line 467 336.2 492.7 336.2 color 0 fill 15132390; spline 473.9 343.1 485.9 329.4 color 16711680 fill 15132390 width 2; spline 485.3 330.2 493.9 329.8 color 16711680 fill 15132390 width 2; spline 467 343.6 473.9 343.1 color 16711680 fill 15132390 width 2; end; end; implementation eq parameters real maximum = 25; real minimum = -25; equations output = limit (input, minimum, maximum); implementation_end; SignalLimiter2 616 336 description '4.01False Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx 2007-9-26 12:47:40 '; type 'SignalLimiter-Limit' ports signal in input; signal out output; end; icon bg bottom figures group rectangle 600 320 632 352 color 0 fill 15132390; line 615.9 324.5 615.9 349 color 0 fill 15132390; line 603 336.2 628.7 336.2 color 0 fill 15132390; spline 609.9 343.1 621.9 329.4 color 16711680 fill 15132390 width 2; spline 621.3 330.2 629.9 329.8 color 16711680 fill 15132390 width 2; spline 603 343.6 609.9 343.1 color 16711680 fill 15132390 width 2; end; end; implementation eq parameters real maximum = 100; real minimum = -100; equations output = limit (input, minimum, maximum); implementation_end; Splitter2 304 336 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [1]; signal knot in input [1]; end; icon bg ellipse figures ellipse 300.8 332.8 307.2 339.2 color -1 fill 0; ellipse 299.7 331.7 308.3 340.3 color -1; terminals input 304 336 fixed; end; implementation eq equations collect (output) = input; implementation_end; Splitter3 688 336 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [1]; signal knot in input [1]; end; icon bg ellipse figures ellipse 684.8 332.8 691.2 339.2 color -1 fill 0; ellipse 683.7 331.7 692.3 340.3 color -1; terminals input 688 336 fixed; end; implementation eq equations collect (output) = input; implementation_end; Splitter4 752 336 description '4.0 Signal\Block Diagram\Splitter.emx 2008-01-17 11:28:29 1 False '; knot Splitter ports signal knot duplicatable out output [1]; signal knot in input [1]; end; icon bg ellipse figures ellipse 748.8 332.8 755.2 339.2 color -1 fill 0; ellipse 747.7 331.7 756.3 340.3 color -1; terminals input 752 336 fixed; end; implementation eq equations collect (output) = input; implementation_end; Square 216 336 description ' 4.0 1 False Signal\Sources\WaveGenerator-Square.emx 2009-3-5 16:05:33 '; type 'WaveGenerator-Square' ports signal out output; end; icon bg bottom figures rectangle 200.1 320 231.9 352 color 0 fill 15132390; line 204.1 323.9 203.9 350.2 color 0 fill 0; line 201.9 348.1 227.9 348.1 color 0 fill 0; line 204.1 348.1 208 348.1 208 336 color 16711680 fill 0; line 216 336 208 336 216 336 color 16711680 fill 0; line 216 348.1 216 336 216 348.1 color 16711680 fill 0; line 224 336 224 348.1 224 336 color 16711680 fill 0; line 227.9 336.1 223.7 336.1 color 16711680 fill 0; line 216 348.1 224 348.1 color 16711680 fill 0; end; implementation eq parameters real amplitude = 1.0; // amplitude of the wave real omega = 0.1 {rad/s}; // angular frequency of the wave variables real hidden s, half; boolean hidden change; equations "calculate at least 2 points per period (just after the change in sign)" half = pi / omega; change = frequencyevent (half, 1e-14); "calculate the square wave" s = sign (sin (omega * time)); output = if( s == 0 ) then amplitude else (amplitude / 2) * (s + 1) end; implementation_end; Step 528 472 description '4.01False Signal\Sources\SignalGenerator-Step.emx 2007-9-27 16:2:44 '; type 'SignalGenerator-Step' ports signal out output; end; icon bg bottom figures group rectangle 512 456 544 488 color 0 fill 15132390; line 521.6 468.8 538.6 468.8 color 16711680 width 2; line 514.9 480 541.1 480 color 0; line 517.1 480.1 521.7 480.1 521.7 468.7 color 16711680 width 2; line 517.1 464 517.1 482.2 color 0; end; end; implementation eq parameters real amplitude = 25; real start_time = 1.0 {s}; variables boolean hidden change; equations "calculate at least at the start time" change = timeevent (start_time); "calculate the step signal" output = amplitude * step (start_time); implementation_end; Submodel1 304 200 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type 'Submodel-Equation' ports signal in input; signal out output; end; implementation eq parameters real angleStep = 1.8 {deg}; real C = 5 {none}; real D = 3 {none}; real omega_max = 27.5 {rad/s}; variables real a_max {rad/s2}; real currentAngle {rad}; real omega {rad/s}; real acc {rad/s2}; initialequations currentAngle = 0; omega = 0; equations a_max = C * exp(D * abs(omega)); acc = limit(input - currentAngle, -a_max, a_max); omega = limint(acc, -omega_max, omega_max); currentAngle = int(omega); output = currentAngle; /* parameters real kp = 0.1 {}; // Proportional gain real tauD = 2.0 {s}; // Derivative time constant: tauD > 0 real beta = 0.1 {}; // Tameness constant: 0 < beta << 1 variables real state, rate; equations rate = (kp * error - output) / (beta * tauD); state = int (rate); output = state + kp * error / beta;*/ implementation_end; Submodel3 832 336 description '4.81parameters real I_phase = 3.4 {mH}; real R_phase = 2.9 {ohm}; real u_max = 3.4 {V}; real RotorInertia = 5.6e-6 {kg.m2}; real StepperMass = 0.29 {kg}; real angle_step = 1.8 {deg}; real n_phase = 2 {none}; real fluxLinkage = 0.0022 {Wb}; real detentTorque = 0.01 {N.m}; variables real omega; real p; // rotor division initialequations p = 2 * pi / (2 * n_phase * angle_step); omega = 200;'; type Submodel ports signal in angle; rotation out p; end; implementation bg submodels I 560 104 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 560 104 color 0 18 bold; end; implementation eq parameters real global I_phase; equations state = int(p.e); p.f = state / I_phase; implementation_end; I1 608 328 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 608 328 color 0 18 bold; end; implementation eq parameters real global I_phase; equations state = int(p.e); p.f = state / I_phase; implementation_end; I2 752 160 description ' 4.2 1 False Bond Graph\I.emx 2011-11-29 15:55:55 '; type I ports power in p; signal out state; restrictions causality preferred in p; end; icon bg bottom figures text 'I' 752 160 color 0 18 bold; end; implementation eq parameters real i = 8e-5 {kg.m2}; real global RotorInertia; equations state = int(p.e); p.f = state / (RotorInertia); implementation_end; MGY_a 656 160 description ' 4.2 1 False Bond Graph\MGY.emx 2011-11-29 16:03:53 '; type MGY ports power in p1; power out p2; signal in r; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'MGY' 656 160 color 0 18 bold; end; implementation eq equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MGY_b 656 272 description ' 4.2 1 False Bond Graph\MGY.emx 2011-11-29 16:03:53 '; type MGY ports power in p1; power out p2; signal in r; restrictions causality constraint equal p1 p2; end; icon bg bottom figures text 'MGY' 656 272 color 0 18 bold; end; implementation eq equations p1.e = r * p2.f; p2.e = r * p1.f; implementation_end; MSe_a 512 160 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports electric out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 512 160 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; MSe_b 512 272 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports electric out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 512 272 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; plug angle 200 216; plug p 1472 216; OneJunction1 840 216 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 840 216 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction2 584 160 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports electric knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 584 160 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction3 584 272 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports electric knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 584 272 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; OneJunction4 752 216 description ' 4.2 1 False Bond Graph\OneJunction.emx 2011-11-29 16:17:51 '; knot OneJunction ports rotation knot duplicatable none p [1]; signal knot out flow [1]; restrictions causality constraint one_out p; end; icon bg figures text '1' 752 216 color 0 18 bold; end; implementation eq equations sum (direct (p.e)) = 0; equal (collect (p.f)); flow = first (p.f); implementation_end; R 608 104 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 608 104 color 0 18 bold; end; implementation eq parameters real global R_phase; equations p.e = R_phase * p.f; implementation_end; R1 560 328 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 560 328 color 0 18 bold; end; implementation eq parameters real global R_phase; equations p.e = R_phase * p.f; implementation_end; R2 824 264 description ' 4.2 1 False Bond Graph\R.emx 2011-11-29 16:35:37 '; type R ports power in p; end; icon bg bottom figures text 'R' 824 264 color 0 18 bold; end; implementation eq parameters real r = 1.0e-3; equations p.e = r * p.f; implementation_end; RotorAngle 656 216 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type Submodel ports signal out output_b; signal out output_a; signal in omega {rad/s} ; signal out output_d; end; icon bg figures rectangle 616 200 696 232 color 0 fill 15132390; text 'name' 656 216 color 0 'Clear Sans' 16; end; implementation eq parameters real global fluxLinkage; real global detentTorque; variables real global p; real angle {rad}; equations angle = int(omega); output_a = -p * fluxLinkage * sin(p * angle); output_b = p * fluxLinkage * sin(p * angle - pi / 2); output_d = detentTorque * sin(2 * p * angle); implementation_end; Se 752 272 description ' 4.2 1 False Bond Graph\MSe.emx 2011-11-29 16:12:33 '; type MSe ports power out p; signal in effort; restrictions causality fixed out p; end; icon bg bottom figures text 'MSe' 752 272 color 0 18 bold; end; implementation eq variables real flow; equations p.e = effort; flow = p.f; implementation_end; Submodel2 512 216 description '4.0 Template\Submodel-Equation.emx 1 False 2007-11-1 22:32:1 False '; type Submodel ports signal in angle; signal out a; signal out b; end; icon bg figures rectangle 472 200 552 232 color 0 fill 15132390; text 'name' 512 216 color 0 'Clear Sans' 16; end; implementation eq parameters real global u_max {V}; real global angle_step; real max_a {m/s2}; variables real current_angle; real c,s; real global p; boolean hidden eventa, eventb; equations a = u_max * (cos (p*angle)); eventa = event(a); b = u_max * -(sin (p*angle)); eventb = event(b); current_angle = angle; implementation_end; end; connections angle -> Submodel2\angle; I2\p <= OneJunction4\p; MGY_a\p2 => OneJunction4\p; MGY_b\p2 => OneJunction4\p; MSe_b\p => OneJunction3\p; OneJunction1\p => p; OneJunction2\p <= MSe_a\p; OneJunction2\p => I\p; OneJunction2\p => MGY_a\p1; OneJunction2\p => R\p; OneJunction3\p => I1\p; OneJunction3\p => MGY_b\p1; OneJunction3\p => R1\p; OneJunction4\flow -> RotorAngle\omega; OneJunction4\p => OneJunction1\p; OneJunction4\p => R2\p; RotorAngle\output_a -> MGY_a\r; RotorAngle\output_b -> MGY_b\r; RotorAngle\output_d -> Se\effort; Se\p => OneJunction4\p; Submodel2\a -> MSe_a\effort; Submodel2\b -> MSe_b\effort; end; implementation_end; ZeroJunction1 936 336 description ' 4.2 1 False Bond Graph\ZeroJunction.emx 2011-11-29 16:45:16 '; knot ZeroJunction ports rotation knot duplicatable none p [1]; signal knot out effort [1]; restrictions causality constraint one_in p; end; icon bg figures text '0' 936 336 color 0 18 bold; end; implementation eq equations sum (direct (p.f)) = 0; equal (collect (p.e)); effort = first (p.e); implementation_end; end; connections C\p <= OneJunction1\p; Integrate\output -> Splitter3\input; Integrate1\output -> Splitter4\input; OneJunction\p => I2\p; OneJunction1\p => R\p; PD\output -> SignalLimiter2\input; PD1\output -> SignalLimiter1\input; PlusMinus1\output -> PD1\error; PlusMinus2\output -> PD\error; SignalLimiter1\output -> PlusMinus2\plus; SignalLimiter2\output -> Integrate\input; Splitter2\output -> PlusMinus1\plus; Splitter2\output -> Submodel1\input; Splitter3\output -> Integrate1\input; Splitter3\output -> PlusMinus2\minus 688 288 528 288; Splitter4\output -> PlusMinus1\minus 752 384 392 384; Splitter4\output -> Submodel3\angle; Square\output -> Splitter2\input; Submodel3\p => ZeroJunction1\p; ZeroJunction1\p => OneJunction\p; end; implementation_end; ]]> Experiment 1 4.8 Submodel3\Submodel2\max_a m/s2 0 C\state_initial 0 I2\state_initial 0 PD1\state_initial 0 PD\state_initial 0 Submodel1\currentAngle_initial rad 0 Submodel1\omega_initial 0 Submodel3\I1\state_initial 0 Submodel3\I\state_initial 0 Submodel3\RotorAngle\angle_initial rad 0 time Submodel3\I2\p.e Submodel3\I2\p.f Submodel3\RotorAngle\angle Submodel3\MSe_a\effort Submodel3\MSe_b\effort Submodel3\Submodel2\a Submodel3\Submodel2\b Integrate\input Integrate\output Integrate1\output Square\output PD\error PD1\error GraphPlot 1 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 model true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true false false 0.0 1.8 true 3 -0.005 0.005 true 2 -2.0 8.0 true 2 3355111 1 3355111 0 true 1 1 1 true true time true Submodel3\I2\p.e 6076255 1 6076255 0 true 1 1 1 true true time true Submodel3\I2\p.f true 0 16777215 GraphPlot 2 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 model(2) true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false 0.0 1.8 true 3 -0.39999999999999986 1.6 true 2 -1.5 3.5 true 2 3355111 1 3355111 0 true 1 1 1 true true time true Submodel3\RotorAngle\angle 6076255 1 6076255 0 true 1 1 1 true true time true Square\output true 0 16777215 GraphPlot 3 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 model(1) true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false 0.0 1.8 true 3 -60.0 140.0 true 1 -400.0 600.0 true 1 -400.0 600.0 true 1 -400.0 600.0 true 1 -400.0 600.0 true 1 3355111 1 3355111 0 true 1 1 1 true true time true Integrate\input 6076255 1 6076255 0 true 1 1 1 true true time true Integrate\output 12553035 1 12553035 0 true 1 1 1 true true time true Integrate1\output 15086320 1 15086320 0 true 1 1 1 true true time true PD\error 15790150 1 15790150 0 true 1 1 1 true true time true PD1\error true 0 16777215 GraphPlot 4 false 16777215 true true 15780518 12624260 0 10 10 10 false 16777215 true 1 Window 2 true Arial 12 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 Arial 10 34 400 0 0 0 0 Arial 12 34 400 0 0 0 0 true true false 0.0 1.8 true 3 -5.0 5.0 true 2 -5.0 5.0 true 2 -5.0 5.0 true 2 -5.0 5.0 true 2 3355111 1 3355111 0 true 1 1 1 true true time true Submodel3\Submodel2\a 6076255 1 6076255 0 true 1 1 1 true true time true Submodel3\MSe_a\effort 12553035 1 12553035 0 true 1 1 1 true true time true Submodel3\MSe_b\effort 15086320 1 15086320 0 true 1 1 1 true true time true Submodel3\Submodel2\b true 0 16777215 1 true Window 1 0 1 2 3 Base 2 false Window 2 2 4 Base 0.0260417 0.025 0.908854 0.872222 0.172917 0.158333 0.841667 0.919444 0.0 1.8 false false false false 0.1 1.0e-6 1.0e-7 false true Euler 0.01 false BackwardEuler 1.0e-5 1.0e-5 1.0e-5 1.0e-5 0.01 1.0 AdamsBashforth 0.01 false RungeKutta2 0.01 false RungeKutta4 1.0e-4 false RungeKutta8 false 0.0 false 0.0 1.0e-6 1.0e-6 0.9 0.33 6.0 0.0 false 100000 false 1000 RungeKuttaFehlberg false 0.0 false 0.0 1.0e-6 1.0e-6 VodeAdams false 0.0 false 0.0 1.0e-6 1.0e-6 false true BDFMethod 1.0e-5 1.0e-5 1.0e-5 1.0e-5 false 0.0 false 0.0 MeBDFiMethod 1.0e-5 1.0e-5 1.0e-5 1.0e-5 false 0.0 false 0.0 8 20 false false true false false 1 0.0 false Optimization true Submodel3\RotorAngle\angle Square\output UseIntegralAbsolute 0.001 BroydonFletcherGoldfarbShanno PD1\kp 1.0 50.0 Linear Uniform 15.0 3.75 1.0 10.0 PD1\tauD 1.0 50.0 Linear Uniform 6.0 1.5 1.0 10.0 true true true true false 1.0