4.8
0
False
C:\users\wouter\My Documents\studie\ma\mahd\implementation\SCARA\03_motor\MR_dynamics2.emx
2020-7-17 15:47:18
';
type Mainmodel
end;
implementation bg
submodels
Base 392 296
description '
4.8
1
False
True
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link.emx
2020-7-16 14:21:54
Base
';
type Submodel
ports
power out p [6,1];
signal in Hin [4,4];
power in p1 [6,1];
signal out Hout [4,4];
parameters
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6] {N.m.s};
real m = 0.00455 {kg};
real COMdim[3,1] = [0.0; 0.0325; 0.0] {m};
real dim[3,1] = [0.0; 0.065; 0.0] {m};
end;
icon bg bottom
figures
rectangle 360 224 424 368 color 0 fill 10025880;
text 'Link' 392 296 color 0;
terminals
p 360 256 fixed;
Hin 360 336 fixed;
p1 424 256 fixed;
Hout 424 336 fixed;
end;
implementation bg
submodels
AdHi0 544 416
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power in p1 [6,1];
power out p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg left
figures
text 'MTF' 544 416 color 0 18 bold;
end;
implementation eq
variables
real onlyRotH[4,4];
code
//Only rotations with respect to the inertial system matter!
onlyRotH = H;
onlyRotH[1,4] = 0;
onlyRotH[2,4] = 0;
onlyRotH[3,4] = 0;
p2.e = transpose(Adjoint(onlyRotH)) * p1.e;
p1.f = Adjoint(onlyRotH) * p2.f;
implementation_end;
AdHij 864 304
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg top
figures
text 'MTF' 864 304 color 0 18 bold;
end;
implementation eq
equations
//Only rotations with respect to the inertial system matter!
p1.e = transpose(Adjoint(H)) * p2.e;
p2.f = Adjoint(H) * p1.f;
implementation_end;
AdHik 544 248
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1 [6,1];
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
parameters
real COMdim[3,1] = [0.0; 0.0325; 0.0];
end;
icon bg left
figures
text 'TF' 544 248 color 0 18 bold;
end;
implementation eq
//Frame in joint connected to port 1
//Principal inertial frame connected in port 2
variables
real d[3]; //distance between frames
real R[3,3]; //rotation between frames
real H[4,4]; //homogeneous matrix
real AdH[6,6]; //Adjoint of homogeneous matrix
equations
d = COMdim; //distance of 1 in z direction of frames
R = eye(3); //no rotation
H = homogeneous(R,d);
AdH = Adjoint(H);
p1.f = AdH * p2.f;
p2.e = transpose(AdH) * p1.e;
implementation_end;
AdHik1 544 360
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1 [6,1];
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
parameters
real COMdim[3,1] = [0.0; 0.0325; 0.0];
end;
icon bg left
figures
text 'TF' 544 360 color 0 18 bold;
end;
implementation eq
//Frame in joint connected to port 1
//Principal inertial frame connected in port 2
variables
real d[3]; //distance between frames
real R[3,3]; //rotation between frames
real H[4,4]; //homogeneous matrix
real AdH[6,6]; //Adjoint of homogeneous matrix
equations
d = COMdim; //distance of 1 in z direction of frames
R = eye(3); //no rotation
H = homogeneous(R,d);
AdH = Adjoint(H);
p1.f = AdH * p2.f;
p2.e = transpose(AdH) * p1.e;
implementation_end;
EJS 608 184
description '
4.0
1
False
Bond Graph\MGY.emx
2007-10-31 11:43:6
True
';
type MGY
ports
power in p1 [6,1];
parameters
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6];
real m = 0.00455;
end;
icon bg top
figures
text 'MGY' 608 184 color 0 18 bold;
end;
implementation eq
//EJS / Gyroscopic effects
variables
real II[6,6]; //Inertial tensor
real Q[6,6];
real QI[6,6];
real v[3];
real omega[3];
equations
II = [ I[1],0, 0, 0, 0, 0;
0, I[2],0, 0, 0, 0;
0, 0, I[3],0, 0, 0;
0, 0, 0, m, 0, 0;
0, 0, 0, 0, m, 0;
0, 0, 0, 0, 0, m];
v[1:3] = p1.f[4:6];
omega[1:3] = p1.f[1:3];
Q[1:3,1:3] = -skew(omega);
Q[1:3,4:6] = -skew(v);
Q[4:6,1:3] = [0,0,0;0,0,0;0,0,0];//matrix filled with zeros
Q[4:6,4:6] = -skew(omega);
QI = Q*II;
p1.e = QI*p1.f;implementation_end;
Gravity 656 416
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
parameters
real m = 0.00455;
end;
icon bg bottom
figures
text 'Se' 656 416 color 0 18 bold;
end;
implementation eq
variables
real effort[6];
equations
effort = [0;0;0;0;0;-9.8*m];
p.e = effort;
implementation_end;
Hij 864 496
description '
4.1
1
False
H.emx
2010-9-21 15:03:50
True
';
type Gain
ports
signal in input [4,4];
signal out output [4,4];
signal out Hab [4,4];
parameters
real dim[3,1] = [0.0; 0.065; 0.0];
end;
icon bg bottom
figures
rectangle 848.1 480 879.9 512 color 0 fill 15132390;
text 'H' 864 496 color 16711680 16 bold;
end;
implementation eq
equations
Hab = homogeneous(eye(3),dim);
output = input * Hab;
implementation_end;
InertialTensor 480 184
description '
4.0
1
False
Bond Graph\I.emx
2007-9-25 12:2:12
True
';
type I
ports
power in p [6,1];
signal out state [6,1];
restrictions
causality preferred in p;
parameters
real m = 0.00455;
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6];
end;
icon bg top
figures
text 'I' 480 184 color 0 18 bold;
end;
implementation eq
variables
real II[6,6]; //Inertial tensor
equations
II = [I[1],0, 0, 0, 0, 0;
0, I[2],0, 0, 0, 0;
0, 0, I[3],0, 0, 0;
0, 0, 0, m, 0, 0;
0, 0, 0, 0, m, 0;
0, 0, 0, 0, 0, m];
state = int(p.e); //state = generalized momentum
p.f = inverse(II)*state;
implementation_end;
plug Hout 984 496;
plug p1 984 304;
plug Hin 472 496;
plug p 472 304;
Splitter1 544 496
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 540.8 492.8 547.2 499.2 color -1 fill 0;
ellipse 539.7 491.7 548.3 500.3 color -1;
terminals
input 544 496 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Ta00 600 416
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 600 416 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0j 544 304
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 544 304 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0k 544 184
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg top
figures
text '1' 544 184 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
end;
connections
AdHi0\p2 => AdHik1\p1;
AdHij\p1 => Ta0j\p;
AdHik\p2 => Ta0k\p;
AdHik1\p2 => Ta0j\p;
Gravity\p => Ta00\p;
Hij\Hab -> AdHij\H;
Hij\output -> Hout;
Hin -> Splitter1\input;
p <= Ta0j\p;
p1 => AdHij\p2;
Splitter1\output -> AdHi0\H;
Splitter1\output -> Hij\input;
Ta00\p => AdHi0\p1;
Ta0j\p => AdHik\p1;
Ta0k\p => EJS\p1;
Ta0k\p => InertialTensor\p;
end;
parameterrelations
InertialTensor\I = I;
InterialTensor\m = m;
EJS\I = I;
EJS\m = m;
AdHik\COMdim = COMdim;
AdHik1\COMdim = COMdim;
Hij\dim = dim;
Gravity\m=m;parameterrelations_end;
figures
text 'b = current link (body)
a = previous link (body)
i = Body fixed frame, fixed in joint with previous link
j = Body fixed frame, fixed in joint with next link
k = Body fixed frame, principal inertial frame
0 = inertial system
' 288 280 color 0;
implementation_end;
Base1 584 296
description '
4.8
1
False
True
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link.emx
2020-7-16 14:21:54
Base
';
type Submodel
ports
power out p [6,1];
signal in Hin [4,4];
power in p1 [6,1];
signal out Hout [4,4];
parameters
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6] {N.m.s};
real m = 0.00455 {kg};
real COMdim[3,1] = [0.0; 0.025; 0.0] {m};
real dim[3,1] = [0.0; 0.05; 0.0] {m};
end;
icon bg bottom
figures
rectangle 552 224 616 368 color 0 fill 10025880;
text 'Link' 584 296 color 0;
terminals
p 552 256 fixed;
Hin 552 336 fixed;
p1 616 256 fixed;
Hout 616 336 fixed;
end;
implementation bg
submodels
AdHi0 664 416
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power in p1 [6,1];
power out p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg left
figures
text 'MTF' 664 416 color 0 18 bold;
end;
implementation eq
variables
real onlyRotH[4,4];
code
//Only rotations with respect to the inertial system matter!
onlyRotH = H;
onlyRotH[1,4] = 0;
onlyRotH[2,4] = 0;
onlyRotH[3,4] = 0;
p2.e = transpose(Adjoint(onlyRotH)) * p1.e;
p1.f = Adjoint(onlyRotH) * p2.f;
implementation_end;
AdHij 816 304
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg top
figures
text 'MTF' 816 304 color 0 18 bold;
end;
implementation eq
equations
//Only rotations with respect to the inertial system matter!
p1.e = transpose(Adjoint(H)) * p2.e;
p2.f = Adjoint(H) * p1.f;
implementation_end;
AdHik 664 248
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1 [6,1];
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
parameters
real COMdim[3,1] = [0.0; 0.025; 0.0];
end;
icon bg left
figures
text 'TF' 664 248 color 0 18 bold;
end;
implementation eq
//Frame in joint connected to port 1
//Principal inertial frame connected in port 2
variables
real d[3]; //distance between frames
real R[3,3]; //rotation between frames
real H[4,4]; //homogeneous matrix
real AdH[6,6]; //Adjoint of homogeneous matrix
equations
d = COMdim; //distance of 1 in z direction of frames
R = eye(3); //no rotation
H = homogeneous(R,d);
AdH = Adjoint(H);
p1.f = AdH * p2.f;
p2.e = transpose(AdH) * p1.e;
implementation_end;
AdHik1 664 360
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power out p1 [6,1];
power in p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
parameters
real COMdim[3,1] = [0.0; 0.025; 0.0];
end;
icon bg left
figures
text 'TF' 664 360 color 0 18 bold;
end;
implementation eq
//Principal inertial frame connected in port 2
variables
real d[3]; //distance between frames
real R[3,3]; //rotation between frames
real H[4,4]; //homogeneous matrix
real AdH[6,6]; //Adjoint of homogeneous matrix
equations
d = COMdim; //distance of 1 in z direction of frames
R = eye(3); //no rotation
H = homogeneous(R,d);
AdH = Adjoint(H);
p1.f = AdH * p2.f;
p2.e = transpose(AdH) * p1.e;
implementation_end;
EJS 728 184
description '
4.0
1
False
Bond Graph\MGY.emx
2007-10-31 11:43:6
True
';
type MGY
ports
power in p1 [6,1];
parameters
real I[3,1] = [7.583e-7; 3.6458e-8; 7.364583e-7];
real m = 0.0035;
end;
icon bg top
figures
text 'MGY' 728 184 color 0 18 bold;
end;
implementation eq
//EJS / Gyroscopic effects
variables
real II[6,6]; //Inertial tensor
real Q[6,6];
real QI[6,6];
real v[3];
real omega[3];
equations
II = [ I[1],0, 0, 0, 0, 0;
0, I[2],0, 0, 0, 0;
0, 0, I[3],0, 0, 0;
0, 0, 0, m, 0, 0;
0, 0, 0, 0, m, 0;
0, 0, 0, 0, 0, m];
v[1:3] = p1.f[4:6];
omega[1:3] = p1.f[1:3];
Q[1:3,1:3] = -skew(omega);
Q[1:3,4:6] = -skew(v);
Q[4:6,1:3] = [0,0,0;0,0,0;0,0,0];//matrix filled with zeros
Q[4:6,4:6] = -skew(omega);
QI = Q*II;
p1.e = QI*p1.f;implementation_end;
Gravity 776 416
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
parameters
real m = 0.0035;
end;
icon bg bottom
figures
text 'Se' 776 416 color 0 18 bold;
end;
implementation eq
variables
real effort[6];
equations
effort = [0;0;0;0;0;-9.8*m];
p.e = effort;
implementation_end;
Hij 816 496
description '
4.1
1
False
H.emx
2010-9-21 15:03:50
True
';
type Gain
ports
signal in input [4,4];
signal out output [4,4];
signal out Hab [4,4];
parameters
real dim[3,1] = [0.0; 0.05; 0.0];
end;
icon bg bottom
figures
rectangle 800.1 480 831.9 512 color 0 fill 15132390;
text 'H' 816 496 color 16711680 16 bold;
end;
implementation eq
equations
Hab = homogeneous(eye(3),dim);
output = input * Hab;
implementation_end;
InertialTensor 600 184
description '
4.0
1
False
Bond Graph\I.emx
2007-9-25 12:2:12
True
';
type I
ports
power in p [6,1];
signal out state [6,1];
restrictions
causality preferred in p;
parameters
real m = 0.0035;
real I[3,1] = [7.583e-7; 3.6458e-8; 7.364583e-7];
end;
icon bg top
figures
text 'I' 600 184 color 0 18 bold;
end;
implementation eq
variables
real II[6,6]; //Inertial tensor
equations
II = [I[1],0, 0, 0, 0, 0;
0, I[2],0, 0, 0, 0;
0, 0, I[3],0, 0, 0;
0, 0, 0, m, 0, 0;
0, 0, 0, 0, m, 0;
0, 0, 0, 0, 0, m];
state = int(p.e); //state = generalized momentum
p.f = inverse(II)*state;
implementation_end;
plug Hout 896 496;
plug p1 904 304;
plug Hin 592 496;
plug p 592 304;
Splitter1 664 496
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 660.8 492.8 667.2 499.2 color -1 fill 0;
ellipse 659.7 491.7 668.3 500.3 color -1;
terminals
input 664 496 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Ta00 720 416
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 720 416 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0j 664 304
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 664 304 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0k 664 184
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg top
figures
text '1' 664 184 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
end;
connections
AdHi0\p2 => AdHik1\p2;
AdHik\p2 => Ta0k\p;
Gravity\p => Ta00\p;
Hij\Hab -> AdHij\H;
Hij\output -> Hout;
Hin -> Splitter1\input;
p <= Ta0j\p;
p1 => AdHij\p2;
Splitter1\output -> AdHi0\H;
Splitter1\output -> Hij\input;
Ta00\p => AdHi0\p1;
Ta0j\p <= AdHij\p1;
Ta0j\p <= AdHik1\p1;
Ta0j\p => AdHik\p1;
Ta0k\p => EJS\p1;
Ta0k\p => InertialTensor\p;
end;
parameterrelations
InertialTensor\I = I;
InterialTensor\m = m;
EJS\I = I;
EJS\m = m;
AdHik\COMdim = COMdim;
AdHik1\COMdim = COMdim;
Hij\dim = dim;
Gravity\m=m;parameterrelations_end;
figures
text 'b = current link (body)
a = previous link (body)
i = Body fixed frame, fixed in joint with previous link
j = Body fixed frame, fixed in joint with next link
k = Body fixed frame, principal inertial frame
0 = inertial system
' 288 280 color 0;
implementation_end;
Base2 888 504
description '4.81FalseTrueBond Graph\MR\center_of_mass.emx2020-7-17 13:52:18Baseparameters
real I [3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6] {N.m.s};
real m = 0.00455 {kg};';
type Submodel
ports
power out p [6,1];
signal in Hin [4,4];
power in p1 [6,1];
signal out Hout [4,4];
end;
icon bg bottom
figures
rectangle 856 464 920 544 color 0 fill 255;
text 'COM' 888 488 color 0;
terminals
p 856 480 fixed;
Hin 856 528 fixed;
p1 920 480 fixed;
Hout 920 528 fixed;
end;
implementation bg
submodels
AdHi0 544 400
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power in p1 [6,1];
power out p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg left
figures
text 'MTF' 544 400 color 0 18 bold;
end;
implementation eq
variables
real onlyRotH[4,4];
code
//Only rotations with respect to the inertial system matter!
onlyRotH = H;
onlyRotH[1,4] = 0;
onlyRotH[2,4] = 0;
onlyRotH[3,4] = 0;
p2.e = transpose(Adjoint(onlyRotH)) * p1.e;
p1.f = Adjoint(onlyRotH) * p2.f;
implementation_end;
EJS 616 256
description '
4.0
1
False
Bond Graph\MGY.emx
2007-10-31 11:43:6
True
';
type MGY
ports
power in p1 [6,1];
end;
icon bg top
figures
text 'MGY' 616 256 color 0 18 bold;
end;
implementation eq
//EJS / Gyroscopic effects
parameters
real global I[3];
real global m;
variables
real II[6,6]; //Inertial tensor
real Q[6,6];
real QI[6,6];
real Ia[6];
initialequations
Ia[1:3] = I;
Ia[4:6] = m;
II = diag(Ia);
equations
Q = transpose(adjoint(p1.f));
QI = Q*II;
p1.e = QI*p1.f;implementation_end;
Gravity 616 400
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'Se' 616 400 color 0 18 bold;
end;
implementation eq
parameters
real global m;
variables
real effort[6];
equations
effort = [0;0;0;0;0;-g_n*m];
p.e = effort;
implementation_end;
InertialTensor 480 256
description '
4.0
1
False
Bond Graph\I.emx
2007-9-25 12:2:12
True
';
type I
ports
power in p [6,1];
signal out state [6,1];
restrictions
causality preferred in p;
end;
icon bg top
figures
text 'I' 480 256 color 0 18 bold;
end;
implementation eq
parameters
real global I[3];
real global m;
variables
real II[6,6]; //Inertial tensor
real Ia[6];
initialequations
Ia[1:3] = I;
Ia[4:6] = m;
II = diag(Ia);
equations
state = int(p.e); //state = generalized momentum
p.f = inverse(II)*state;
implementation_end;
plug Hin 472 496;
plug p1 752 304;
plug Hout 768 496;
plug p 472 304;
Splitter1 544 496
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 540.8 492.8 547.2 499.2 color -1 fill 0;
ellipse 539.7 491.7 548.3 500.3 color -1;
terminals
input 544 496 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Ta0j 544 304
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 544 304 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0k 544 256
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg top
figures
text '1' 544 256 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
end;
connections
AdHi0\p2 => Ta0j\p;
Gravity\p => AdHi0\p1;
Hin -> Splitter1\input;
p <= Ta0j\p;
p1 => Ta0j\p;
Splitter1\output -> AdHi0\H;
Splitter1\output -> Hout;
Ta0j\p => Ta0k\p;
Ta0k\p => EJS\p1;
Ta0k\p => InertialTensor\p;
end;
parameterrelations
InertialTensor\I = I;
InterialTensor\m = m;
EJS\I = I;
EJS\m = m;
AdHik\COMdim = COMdim;
AdHik1\COMdim = COMdim;
Hij\dim = dim;
Gravity\m=m;parameterrelations_end;
figures
text 'b = current link (body)
a = previous link (body)
i = Body fixed frame, fixed in joint with previous link
j = Body fixed frame, fixed in joint with next link
k = Body fixed frame, principal inertial frame
0 = inertial system
' 288 280 color 0;
implementation_end;
Base3 544 504
description '
4.8
1
False
True
Bond Graph\MR\center_of_mass.emx
2020-7-17 13:52:18
Base
';
type Submodel
ports
power out p [6,1];
signal in Hin [4,4];
power in p1 [6,1];
signal out Hout [4,4];
end;
icon bg bottom
figures
rectangle 512 464 576 544 color 0 fill 255;
text 'COM' 544 488 color 0;
terminals
p 512 480 fixed;
Hin 512 528 fixed;
p1 576 480 fixed;
Hout 576 528 fixed;
end;
implementation bg
submodels
AdHi0 544 400
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power in p1 [6,1];
power out p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg left
figures
text 'MTF' 544 400 color 0 18 bold;
end;
implementation eq
variables
real onlyRotH[4,4];
code
//Only rotations with respect to the inertial system matter!
onlyRotH = H;
onlyRotH[1,4] = 0;
onlyRotH[2,4] = 0;
onlyRotH[3,4] = 0;
p2.e = transpose(Adjoint(onlyRotH)) * p1.e;
p1.f = Adjoint(onlyRotH) * p2.f;
implementation_end;
EJS 616 256
description '
4.0
1
False
Bond Graph\MGY.emx
2007-10-31 11:43:6
True
';
type MGY
ports
power in p1 [6,1];
parameters
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6];
real m = 0.00455;
end;
icon bg top
figures
text 'MGY' 616 256 color 0 18 bold;
end;
implementation eq
//EJS / Gyroscopic effects
variables
real II[6,6]; //Inertial tensor
real Q[6,6];
real QI[6,6];
real Ia[6];
initialequations
Ia[1:3] = I;
Ia[4:6] = m;
II = diag(Ia);
equations
Q = transpose(adjoint(p1.f));
QI = Q*II;
p1.e = QI*p1.f;implementation_end;
Gravity 616 400
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
parameters
real m = 0.00455;
end;
icon bg bottom
figures
text 'Se' 616 400 color 0 18 bold;
end;
implementation eq
variables
real effort[6];
equations
effort = [0;0;0;0;0;-g_n*m];
p.e = effort;
implementation_end;
InertialTensor 472 256
description '
4.0
1
False
Bond Graph\I.emx
2007-9-25 12:2:12
True
';
type I
ports
power in p [6,1];
signal out state [6,1];
restrictions
causality preferred in p;
parameters
real m = 0.00455;
real I[3,1] = [1.6399999999999998e-6; 4.7e-8; 1.61e-6];
end;
icon bg top
figures
text 'I' 472 256 color 0 18 bold;
end;
implementation eq
variables
real II[6,6]; //Inertial tensor
equations
II = [I[1],0, 0, 0, 0, 0;
0, I[2],0, 0, 0, 0;
0, 0, I[3],0, 0, 0;
0, 0, 0, m, 0, 0;
0, 0, 0, 0, m, 0;
0, 0, 0, 0, 0, m];
state = int(p.e); //state = generalized momentum
p.f = inverse(II)*state;
implementation_end;
plug Hin 472 496;
plug p1 616 304;
plug Hout 616 496;
plug p 472 304;
Splitter1 544 496
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 540.8 492.8 547.2 499.2 color -1 fill 0;
ellipse 539.7 491.7 548.3 500.3 color -1;
terminals
input 544 496 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Ta0j 544 304
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg bottom
figures
text '1' 544 304 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Ta0k 544 256
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg top
figures
text '1' 544 256 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
end;
connections
AdHi0\p2 => Ta0j\p;
Gravity\p => AdHi0\p1;
Hin -> Splitter1\input;
p <= Ta0j\p;
p1 => Ta0j\p;
Splitter1\output -> AdHi0\H;
Splitter1\output -> Hout;
Ta0j\p => Ta0k\p;
Ta0k\p => EJS\p1;
Ta0k\p => InertialTensor\p;
end;
parameterrelations
InertialTensor\I = I;
InterialTensor\m = m;
EJS\I = I;
EJS\m = m;
AdHik\COMdim = COMdim;
AdHik1\COMdim = COMdim;
Hij\dim = dim;
Gravity\m=m;parameterrelations_end;
figures
text 'b = current link (body)
a = previous link (body)
i = Body fixed frame, fixed in joint with previous link
j = Body fixed frame, fixed in joint with next link
k = Body fixed frame, principal inertial frame
0 = inertial system
' 288 280 color 0;
implementation_end;
Constant 168 336
description '
4.0
1
False
Signal\Sources\Constant.emx
2007-10-19 14:48:44
True
';
type Constant
ports
signal out output [4,4];
end;
icon bg bottom
figures
rectangle 152.1 320 183.9 352 color 0 fill 15132390;
line 156.9 331.6 178.9 331.6 color 16711680 width 2;
line 154.2 342.7 179.9 342.7 color 0;
line 156.5 326.7 156.5 345 color 0;
end;
implementation eq
equations
output = eye(4);
implementation_end;
Constant1 296 48
description '4.01False
Signal\Sources\Constant.emx
2007-10-19 14:48:44
';
type Constant
ports
signal out output;
end;
icon bg bottom
figures
rectangle 280.1 32 311.9 64 color 0 fill 15132390;
line 284.9 43.6 306.9 43.6 color 16711680 width 2;
line 282.2 54.7 307.9 54.7 color 0;
line 284.5 38.7 284.5 57 color 0;
end;
implementation eq
parameters
real C = 1.0; // output value
equations
output = C;
implementation_end;
Constant2 480 688
description '4.01False
Signal\Sources\Constant.emx
2007-10-19 14:48:44
';
type Constant
ports
signal out output;
end;
icon bg bottom
figures
rectangle 464.1 672 495.9 704 color 0 fill 15132390;
line 468.9 683.6 490.9 683.6 color 16711680 width 2;
line 466.2 694.7 491.9 694.7 color 0;
line 468.5 678.7 468.5 697 color 0;
end;
implementation eq
parameters
real C = 1.0; // output value
equations
output = C;
implementation_end;
Joint 384.1 502
description '
4.8
1
False
True
Bond Graph\MR\joint-v2.emx
2020-7-17 15:47:03
';
type 'Submodel-rotz'
ports
power out p [6,1];
power in p1;
power in p2 [6,1];
signal in Hin [4,4];
signal out Hout [4,4];
end;
icon bg bottom
figures
rectangle 352.2 464 416 540 color 0 fill 14745599;
text 'Joint' 384 496 color 0;
terminals
p 352 480 fixed;
p1 384 464 fixed;
p2 416 480 fixed;
Hin 352 528 fixed;
Hout 416 528 fixed;
end;
implementation bg
submodels
AdHji 416 328
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg bottom
figures
text 'MTF' 416 328 color 0 18 bold;
end;
implementation eq
equations
p2.e = transpose(Adjoint(H)) * p1.e;
p1.f = Adjoint(H) * p2.f;implementation_end;
JointType 232 216
description '4.81FalseTrueparameters
real joint = 3;';
type Submodel
ports
mechanical in p1;
signal out output [4,4];
power out p2 [6,1];
end;
implementation bg
submodels
Integrate 320 272
description '
4.0
1
False
Signal\Block Diagram\Integrate.emx
2007-9-26 12:3:23
True
';
type Integrate
ports
signal in input;
signal out output [4,4];
parameters
real init = -2.9496;
end;
icon bg
figures
rectangle 304 256 336 288 color 0 fill 15132390;
text 'ò' 320 269.3 color 16711680 'SymbolProp BT' 21 symbol;
end;
implementation eq
parameters
real global joint;
variables
real R[3,3];
real p[3];
real q;
real qa[6];
real temp [4,4];
initialequations
qa = 0;
equations
q = -int(input,init);
qa[joint] = q;
R = dll('EulerAngles.dll','RotationMatrixFromEulXYZs',qa);
output = homogeneous(R,qa[4:6]);implementation_end;
plug p1 240 188;
plug output 320 368;
plug p2 240 412;
OneJunction2 240 271.9
description '
4.2
1
False
Bond Graph\FlowSensor.emx
2011-11-29 15:50:53
';
knot FlowSensor
ports
mechanical knot in p1 [1];
power knot out p2 [1];
signal knot out flow [1];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg ellipse
figures
ellipse 233.1 264.8 246.9 279.1 color 0 fill 16777215;
text 'f' 240 271.2 color 0;
end;
implementation eq
equations
p2.f = p1.f;
p1.e = p2.e;
flow = p1.f;
implementation_end;
uTbai 240 328
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1;
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
causality fixed in p1;
causality fixed out p2;
parameters
real Cconstraint = 1.0e-4;
real Rconstraint = 1000.0;
end;
icon bg left
figures
text 'TF' 240 328 color 0 18 bold;
end;
implementation eq
parameters
real global joint;
variables
real i;
real state[6];
equations
/*p2.e[1] = (Rconstraint*-p2.f[1] + int(-p2.f[1])/Cconstraint);
p2.e[2] = (Rconstraint*-p2.f[2] + int(-p2.f[2])/Cconstraint);
p2.e[3] = p1.e;
p2.e[4] = (Rconstraint*-p2.f[4] + int(-p2.f[4])/Cconstraint);
p2.e[5] = (Rconstraint*-p2.f[5] + int(-p2.f[5])/Cconstraint);
p2.e[6] = (Rconstraint*-p2.f[6] + int(-p2.f[6])/Cconstraint);
p1.f = p2.f[3];*/
state = int(p2.f);
for i = 1 to 6 do
if i == joint then
p1.f = p2.f[i];
p2.e[i] = p1.e;
else
p2.e[i] = (Rconstraint*-p2.f[i] + -state[i]/Cconstraint);
end;
end;
implementation_end;
end;
connections
Integrate\output -> output;
OneJunction2\flow -> Integrate\input;
OneJunction2\p2 => uTbai\p1;
p1 => OneJunction2\p1;
uTbai\p2 => p2;
end;
implementation_end;
MatrixMul 312 480
description '
4.0
1
False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
True
';
type Gain
ports
signal in input1 [4,4];
signal out output [4,4];
signal in input2 [4,4];
end;
icon bg bottom
figures
rectangle 296.1 464 327.9 496 color 0 fill 15132390;
text 'X' 312 480 color 16711680 16 bold;
end;
implementation eq
variables
real temp[4,4];
equations
output = input2*input1;
temp = input2*input1; implementation_end;
plug p 104 328;
plug p1 232 88;
plug p2 488 328;
plug Hin 104 480;
plug Hout 496 480;
Splitter2 312 216
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 308.8 212.8 315.2 219.2 color -1 fill 0;
ellipse 307.7 211.7 316.3 220.3 color -1;
terminals
input 312 216 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Wbai 232 328
description '
4.0
1
False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
True
';
knot ZeroJunction
ports
power knot duplicatable none p [6,1];
signal knot out effort [6,1];
restrictions
causality constraint one_in p;
end;
icon bg bottom
figures
text '0' 232 328 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
end;
connections
Hin -> MatrixMul\input2;
JointType\output -> Splitter2\input;
JointType\p2 => Wbai\p;
MatrixMul\output -> Hout;
p <= Wbai\p;
p1 => JointType\p1;
p2 => AdHji\p2;
Splitter2\output -> AdHji\H 416 216;
Splitter2\output -> MatrixMul\input1;
Wbai\p <= AdHji\p1;
end;
parameterrelations
EndstopMin\Rendstop = Rendstop;
EndstopMin\Cendstop = Cendstop;
EndstopMin\InitialPos = InitialPos;
EndstopMin\EndstopPos = MinEndstopPos;
EndstopMax\Rendstop = Rendstop;
EndstopMax\Cendstop = Cendstop;
EndstopMax\InitialPos = InitialPos;
EndstopMax\EndstopPos = MaxEndstopPos;
Rjoint\Rjoint= Rjoint;
Integrate\init = InitialPos;
uTbai\Rconstraint = Rconstraint;
uTbai\Cconstraint = Cconstraint;
parameterrelations_end;
figures
text 'b = next link (body)
a = previous link (body)
i = Frame fixed in previous body, fixed in joint
j = Frame fixed in next body, fixed in joint
' 672 392 color 0;
implementation_end;
Joint1 728.1 502
description '
4.8
1
False
True
Bond Graph\MR\joint-v2.emx
2020-7-17 14:55:32
';
type 'Submodel-rotz'
ports
power out p [6,1];
power in p1;
power in p2 [6,1];
signal in Hin [4,4];
signal out Hout [4,4];
signal out q;
end;
icon bg bottom
figures
rectangle 696.2 464 760 540 color 0 fill 14745599;
text 'Joint' 728 496 color 0;
terminals
p 696 480 fixed;
p1 728 464 fixed;
p2 760 480 fixed;
Hin 696 528 fixed;
Hout 760 528 fixed;
end;
implementation bg
submodels
AdHji 424 424
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg bottom
figures
text 'MTF' 424 424 color 0 18 bold;
end;
implementation eq
equations
p2.e = transpose(Adjoint(H)) * p1.e;
p1.f = Adjoint(H) * p2.f;implementation_end;
JointType 240 312
description '4.81FalseTrueparameters
real joint = 3;';
type Submodel
ports
mechanical in p1;
signal out output [4,4];
power out p2 [6,1];
signal out q;
end;
implementation bg
submodels
Integrate 320 272
description '
4.0
1
False
Signal\Block Diagram\Integrate.emx
2007-9-26 12:3:23
True
';
type Integrate
ports
signal in input;
signal out output [4,4];
signal out q;
parameters
real init = -2.9496;
end;
icon bg
figures
rectangle 304 256 336 288 color 0 fill 15132390;
text 'ò' 320 269.3 color 16711680 'SymbolProp BT' 21 symbol;
end;
implementation eq
parameters
real global joint;
variables
real R[3,3];
real p[3];
real qa[6];
real temp [4,4];
initialequations
qa = 0;
equations
q = -int(input,init);
qa[joint] = q;
R = dll('EulerAngles.dll','RotationMatrixFromEulXYZs',qa);
output = homogeneous(R,qa[4:6]);implementation_end;
plug p1 240 188;
plug output 320 416;
plug p2 240 412;
plug q 320 184;
OneJunction2 240 271.9
description '
4.2
1
False
Bond Graph\FlowSensor.emx
2011-11-29 15:50:53
';
knot FlowSensor
ports
mechanical knot in p1 [1];
power knot out p2 [1];
signal knot out flow [1];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg ellipse
figures
ellipse 233.1 264.8 246.9 279.1 color 0 fill 16777215;
text 'f' 240 271.2 color 0;
end;
implementation eq
equations
p2.f = p1.f;
p1.e = p2.e;
flow = p1.f;
implementation_end;
uTbai 240 328
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1;
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
causality fixed in p1;
causality fixed out p2;
parameters
real Cconstraint = 1.0e-4;
real Rconstraint = 1000.0;
end;
icon bg left
figures
text 'TF' 240 328 color 0 18 bold;
end;
implementation eq
parameters
real global joint;
variables
real i;
real state[6];
equations
/*p2.e[1] = (Rconstraint*-p2.f[1] + int(-p2.f[1])/Cconstraint);
p2.e[2] = (Rconstraint*-p2.f[2] + int(-p2.f[2])/Cconstraint);
p2.e[3] = p1.e;
p2.e[4] = (Rconstraint*-p2.f[4] + int(-p2.f[4])/Cconstraint);
p2.e[5] = (Rconstraint*-p2.f[5] + int(-p2.f[5])/Cconstraint);
p2.e[6] = (Rconstraint*-p2.f[6] + int(-p2.f[6])/Cconstraint);
p1.f = p2.f[3];*/
state = int(p2.f);
for i = 1 to 6 do
if i == joint then
p1.f = p2.f[i];
p2.e[i] = p1.e;
else
p2.e[i] = (Rconstraint*-p2.f[i] + -state[i]/Cconstraint);
end;
end;
implementation_end;
end;
connections
Integrate\output -> output;
Integrate\q -> q;
OneJunction2\flow -> Integrate\input;
OneJunction2\p2 => uTbai\p1;
p1 => OneJunction2\p1;
uTbai\p2 => p2;
end;
implementation_end;
MatrixMul 320 576
description '
4.0
1
False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
True
';
type Gain
ports
signal in input1 [4,4];
signal out output [4,4];
signal in input2 [4,4];
end;
icon bg bottom
figures
rectangle 304.1 560 335.9 592 color 0 fill 15132390;
text 'X' 320 576 color 16711680 16 bold;
end;
implementation eq
equations
output = input2*input1; implementation_end;
plug p 112 424;
plug p1 240 40;
plug p2 496 424;
plug Hin 112 576;
plug Hout 504 576;
plug q 112 312;
Splitter2 320 312
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 316.8 308.8 323.2 315.2 color -1 fill 0;
ellipse 315.7 307.7 324.3 316.3 color -1;
terminals
input 320 312 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Wbai 240 424
description '
4.0
1
False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
True
';
knot ZeroJunction
ports
power knot duplicatable none p [6,1];
signal knot out effort [6,1];
restrictions
causality constraint one_in p;
end;
icon bg bottom
figures
text '0' 240 424 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
end;
connections
Hin -> MatrixMul\input2;
JointType\output -> Splitter2\input;
JointType\p1 <= p1;
JointType\p2 => Wbai\p;
JointType\q -> q;
MatrixMul\output -> Hout;
p <= Wbai\p;
p2 => AdHji\p2;
Splitter2\output -> AdHji\H 424 312;
Splitter2\output -> MatrixMul\input1;
Wbai\p <= AdHji\p1;
end;
parameterrelations
EndstopMin\Rendstop = Rendstop;
EndstopMin\Cendstop = Cendstop;
EndstopMin\InitialPos = InitialPos;
EndstopMin\EndstopPos = MinEndstopPos;
EndstopMax\Rendstop = Rendstop;
EndstopMax\Cendstop = Cendstop;
EndstopMax\InitialPos = InitialPos;
EndstopMax\EndstopPos = MaxEndstopPos;
Rjoint\Rjoint= Rjoint;
Integrate\init = InitialPos;
uTbai\Rconstraint = Rconstraint;
uTbai\Cconstraint = Cconstraint;
parameterrelations_end;
figures
text 'b = next link (body)
a = previous link (body)
i = Frame fixed in previous body, fixed in joint
j = Frame fixed in next body, fixed in joint
' 680 488 color 0;
implementation_end;
JointBase1 488.2 296
description '
4.1
1
False
True
Joint-roty.emx
2011-1-18 17:30:05
';
type 'Submodel-roty'
ports
power out p [6,1];
power in p1;
power in p2 [6,1];
signal in Hin [4,4];
signal out Hout [4,4];
parameters
real Rconstraint = 1000.0;
real Cconstraint = 1.0e-4;
real Rendstop = 1000.0;
real Cendstop = 1.0e-4;
real InitialPos = -1.13;
real MaxEndstopPos = 1.57;
real MinEndstopPos = -1.131;
real Rjoint = 0.1;
end;
icon bg bottom
figures
rectangle 456.5 224 520 368 color 0 fill 14745599;
text 'Joint-roty' 488.5 299 color 0;
terminals
p 456 256 fixed;
p1 487.5 224 fixed;
p2 520 256 fixed;
Hin 456 336 fixed;
Hout 520 336 fixed;
end;
implementation bg
submodels
AdHji 424 424
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg bottom
figures
text 'MTF' 424 424 color 0 18 bold;
end;
implementation eq
equations
p2.e = transpose(Adjoint(H)) * p1.e;
p1.f = Adjoint(H) * p2.f;implementation_end;
Integrate 320 336
description '
4.0
1
False
Signal\Block Diagram\Integrate.emx
2007-9-26 12:3:23
True
';
type Integrate
ports
signal in input;
signal out output [4,4];
parameters
real init = -2.9496;
end;
icon bg
figures
rectangle 304 320 336 352 color 0 fill 15132390;
text 'ò' 320 333.3 color 16711680 'SymbolProp BT' 21 symbol;
end;
implementation eq
variables
real R[3,3];
real p[3];
real q;
equations
q = -int(input,init);
R = [ cos(q), -sin(q), 0;
sin(q), cos(q), 0;
0, 0, 1];
p = [0;0;0];
output = homogeneous(R,p);
implementation_end;
MatrixMul 320 496
description '
4.0
1
False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
True
';
type Gain
ports
signal in input1 [4,4];
signal out output [4,4];
signal in input2 [4,4];
end;
icon bg bottom
figures
rectangle 304.1 480 335.9 512 color 0 fill 15132390;
text 'X' 320 496 color 16711680 16 bold;
end;
implementation eq
equations
output = input2*input1; implementation_end;
plug p1 240 56;
plug p2 496 424;
plug Hin 112 496;
plug Hout 504 496;
plug p 112 424;
OneJunction 240 272
description '4.01False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 240 272 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Rjoint 192 272
description '
4.0
1
False
Bond Graph\R.emx
2007-9-25 12:3:18
True
';
type R
ports
power in p;
parameters
real Rjoint = 0.1;
end;
icon bg bottom
figures
text 'R' 192 272 color 0 18 bold;
end;
implementation eq
equations
p.e = Rjoint * p.f;
implementation_end;
Splitter2 320 368
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 316.8 364.8 323.2 371.2 color -1 fill 0;
ellipse 315.7 363.7 324.3 372.3 color -1;
terminals
input 320 368 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Tbai 240 384
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg left
figures
text '1' 240 384 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
uTbai 240 328
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1;
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
causality fixed in p1;
causality fixed out p2;
parameters
real Cconstraint = 1.0e-4;
real Rconstraint = 1000.0;
end;
icon bg left
figures
text 'TF' 240 328 color 0 18 bold;
end;
implementation eq
equations
p2.e[1] = (Rconstraint*-p2.f[1] + int(-p2.f[1])/Cconstraint);
p2.e[2] = (Rconstraint*-p2.f[2] + int(-p2.f[2])/Cconstraint);
p2.e[3] = p1.e;
p2.e[4] = (Rconstraint*-p2.f[4] + int(-p2.f[4])/Cconstraint);
p2.e[5] = (Rconstraint*-p2.f[5] + int(-p2.f[5])/Cconstraint);
p2.e[6] = (Rconstraint*-p2.f[6] + int(-p2.f[6])/Cconstraint);
p1.f = p2.f[3];
implementation_end;
Wbai 240 424
description '
4.0
1
False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
True
';
knot ZeroJunction
ports
power knot duplicatable none p [6,1];
signal knot out effort [6,1];
restrictions
causality constraint one_in p;
end;
icon bg bottom
figures
text '0' 240 424 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
ZeroJunction 240 104
description '4.01False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
';
knot ZeroJunction
ports
power knot duplicatable none p [1];
signal knot out effort [1];
restrictions
causality constraint one_in p;
end;
icon bg
figures
text '0' 240 104 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
end;
connections
Hin -> MatrixMul\input2;
Integrate\output -> Splitter2\input;
MatrixMul\output -> Hout;
OneJunction\flow -> Integrate\input 320 272;
OneJunction\p => Rjoint\p;
OneJunction\p => uTbai\p1;
p <= Wbai\p;
p1 => ZeroJunction\p;
p2 => AdHji\p2;
Splitter2\output -> AdHji\H 424 368;
Splitter2\output -> MatrixMul\input1;
Tbai\p => Wbai\p;
uTbai\p2 => Tbai\p;
Wbai\p <= AdHji\p1;
ZeroJunction\p => OneJunction\p;
end;
parameterrelations
EndstopMin\Rendstop = Rendstop;
EndstopMin\Cendstop = Cendstop;
EndstopMin\InitialPos = InitialPos;
EndstopMin\EndstopPos = MinEndstopPos;
EndstopMax\Rendstop = Rendstop;
EndstopMax\Cendstop = Cendstop;
EndstopMax\InitialPos = InitialPos;
EndstopMax\EndstopPos = MaxEndstopPos;
Rjoint\Rjoint= Rjoint;
Integrate\init = InitialPos;
uTbai\Rconstraint = Rconstraint;
uTbai\Cconstraint = Cconstraint;parameterrelations_end;
figures
text 'b = next link (body)
a = previous link (body)
i = Frame fixed in previous body, fixed in joint
j = Frame fixed in next body, fixed in joint
' 744 400 color 0;
implementation_end;
JointBase2 296.2 296
description '
4.1
1
False
True
Joint-roty.emx
2011-1-18 17:30:05
';
type 'Submodel-roty'
ports
power out p [6,1];
power in p1;
power in p2 [6,1];
signal in Hin [4,4];
signal out Hout [4,4];
parameters
real Rconstraint = 1000.0;
real Cconstraint = 1.0e-4;
real Rendstop = 1000.0;
real Cendstop = 1.0e-4;
real InitialPos = 0.0;
real MaxEndstopPos = 1.57;
real MinEndstopPos = -1.131;
real Rjoint = 0.1;
end;
icon bg bottom
figures
rectangle 264.5 224 328 368 color 0 fill 14745599;
text 'Joint-roty' 296.5 299 color 0;
terminals
p 264 256 fixed;
p1 295.5 224 fixed;
p2 328 256 fixed;
Hin 264 336 fixed;
Hout 328 336 fixed;
end;
implementation bg
submodels
AdHji 424 424
description '
4.0
1
False
Bond Graph\MTF.emx
2007-9-25 12:3:3
True
';
type MTF
ports
power out p1 [6,1];
power in p2 [6,1];
signal in H [4,4];
restrictions
causality constraint not_equal p1 p2;
end;
icon bg bottom
figures
text 'MTF' 424 424 color 0 18 bold;
end;
implementation eq
equations
p2.e = transpose(Adjoint(H)) * p1.e;
p1.f = Adjoint(H) * p2.f;implementation_end;
Integrate 320 328
description '
4.0
1
False
Signal\Block Diagram\Integrate.emx
2007-9-26 12:3:23
True
';
type Integrate
ports
signal in input;
signal out output [4,4];
parameters
real init = -2.9496;
end;
icon bg
figures
rectangle 304 312 336 344 color 0 fill 15132390;
text 'ò' 320 325.3 color 16711680 'SymbolProp BT' 21 symbol;
end;
implementation eq
variables
real R[3,3];
real p[3];
real q;
equations
q = -int(input,init);
R = [ cos(q), -sin(q), 0;
sin(q), cos(q), 0;
0, 0, 1];
p = [0;0;0];
output = homogeneous(R,p);
implementation_end;
MatrixMul 320 496
description '
4.0
1
False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
True
';
type Gain
ports
signal in input1 [4,4];
signal out output [4,4];
signal in input2 [4,4];
end;
icon bg bottom
figures
rectangle 304.1 480 335.9 512 color 0 fill 15132390;
text 'X' 320 496 color 16711680 16 bold;
end;
implementation eq
equations
output = input2*input1; implementation_end;
plug p1 240 56;
plug p2 496 424;
plug Hin 112 496;
plug Hout 504 496;
plug p 112 424;
OneJunction 240 272
description '4.01False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 240 272 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
Rjoint 192 272
description '
4.0
1
False
Bond Graph\R.emx
2007-9-25 12:3:18
True
';
type R
ports
power in p;
parameters
real Rjoint = 0.1;
end;
icon bg bottom
figures
text 'R' 192 272 color 0 18 bold;
end;
implementation eq
equations
p.e = Rjoint * p.f;
implementation_end;
Splitter2 320 368
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 316.8 364.8 323.2 371.2 color -1 fill 0;
ellipse 315.7 363.7 324.3 372.3 color -1;
terminals
input 320 368 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Tbai 240 376
description '
4.0
1
False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
True
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg left
figures
text '1' 240 376 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
uTbai 240 328
description '
4.0
1
False
Bond Graph\TF.emx
2007-9-25 12:4:2
True
';
type TF
ports
power in p1;
power out p2 [6,1];
restrictions
causality constraint not_equal p1 p2;
causality fixed in p1;
causality fixed out p2;
parameters
real Cconstraint = 1.0e-4;
real Rconstraint = 1000.0;
end;
icon bg left
figures
text 'TF' 240 328 color 0 18 bold;
end;
implementation eq
equations
p2.e[1] = (Rconstraint*-p2.f[1] + int(-p2.f[1])/Cconstraint);
p2.e[2] = (Rconstraint*-p2.f[2] + int(-p2.f[2])/Cconstraint);
p2.e[3] = p1.e;
p2.e[4] = (Rconstraint*-p2.f[4] + int(-p2.f[4])/Cconstraint);
p2.e[5] = (Rconstraint*-p2.f[5] + int(-p2.f[5])/Cconstraint);
p2.e[6] = (Rconstraint*-p2.f[6] + int(-p2.f[6])/Cconstraint);
p1.f = p2.f[3];
implementation_end;
Wbai 240 424
description '
4.0
1
False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
True
';
knot ZeroJunction
ports
power knot duplicatable none p [6,1];
signal knot out effort [6,1];
restrictions
causality constraint one_in p;
end;
icon bg bottom
figures
text '0' 240 424 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
ZeroJunction 240 160
description '4.01False
Bond Graph\ZeroJunction.emx
2007-9-27 9:51:43
';
knot ZeroJunction
ports
power knot duplicatable none p [1];
signal knot out effort [1];
restrictions
causality constraint one_in p;
end;
icon bg
figures
text '0' 240 160 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
end;
connections
Hin -> MatrixMul\input2;
Integrate\output -> Splitter2\input;
MatrixMul\output -> Hout;
OneJunction\flow -> Integrate\input 320 272;
OneJunction\p => Rjoint\p;
OneJunction\p => uTbai\p1;
p <= Wbai\p;
p1 => ZeroJunction\p;
p2 => AdHji\p2;
Splitter2\output -> AdHji\H 424 368;
Splitter2\output -> MatrixMul\input1;
Tbai\p => Wbai\p;
uTbai\p2 => Tbai\p;
Wbai\p <= AdHji\p1;
ZeroJunction\p => OneJunction\p;
end;
parameterrelations
EndstopMin\Rendstop = Rendstop;
EndstopMin\Cendstop = Cendstop;
EndstopMin\InitialPos = InitialPos;
EndstopMin\EndstopPos = MinEndstopPos;
EndstopMax\Rendstop = Rendstop;
EndstopMax\Cendstop = Cendstop;
EndstopMax\InitialPos = InitialPos;
EndstopMax\EndstopPos = MaxEndstopPos;
Rjoint\Rjoint= Rjoint;
Integrate\init = InitialPos;
uTbai\Rconstraint = Rconstraint;
uTbai\Cconstraint = Cconstraint;parameterrelations_end;
figures
text 'b = next link (body)
a = previous link (body)
i = Frame fixed in previous body, fixed in joint
j = Frame fixed in next body, fixed in joint
' 744 400 color 0;
implementation_end;
Link 464 504
description '
4.8
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link-v2.emx
1
False
2020-7-16 17:44:32
False
';
type 'Submodel-Equation'
ports
signal in Hin [4,4];
signal out Hout [4,4];
power in Pin [6,1];
power out Pout [6,1];
restrictions
causality constraint not_equal Pin Pout;
end;
icon bg bottom
figures
rectangle 432 464 496 544 color 0 fill 8454041;
text 'name' 464 488 color 0 'Clear Sans' 16;
terminals
Hin 432 528 fixed;
Hout 496 528 fixed;
Pin 496 480 fixed;
Pout 432 480 fixed;
end;
implementation eq
parameters
real offset[3]= [0.0; 0.0325; 0.0]; //coordinates of joint_1
variables
real Hab[4,4];
real AdHab[6,6];
equations
Hab = homogeneous(eye(3),offset);
AdHab = Adjoint(eye(3),offset);
Hout = Hin * Hab;
Pout.e = transpose(AdHab) * Pin.e;
Pin.f = AdHab * Pout.f;
implementation_end;
Link1 624 504
description '
4.8
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link-v2.emx
1
False
2020-7-16 17:44:32
False
';
type 'Submodel-Equation'
ports
signal in Hin [4,4];
signal out Hout [4,4];
power in Pin [6,1];
power out Pout [6,1];
restrictions
causality constraint not_equal Pin Pout;
end;
icon bg bottom
figures
rectangle 592 464 656 544 color 0 fill 8454041;
text 'name' 624 488 color 0 'Clear Sans' 16;
terminals
Hin 592 528 fixed;
Hout 656 528 fixed;
Pin 656 480 fixed;
Pout 592 480 fixed;
end;
implementation eq
parameters
real offset[3]= [0.0; 0.0325; 0.0]; //coordinates of joint_1
variables
real Hab[4,4];
real AdHab[6,6];
equations
Hab = homogeneous(eye(3),offset);
AdHab = Adjoint(eye(3),offset);
Hout = Hin * Hab;
Pout.e = transpose(AdHab) * Pin.e;
Pin.f = AdHab * Pout.f;
implementation_end;
Link2 808 504
description '
4.8
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link-v2.emx
1
False
2020-7-16 17:44:32
False
';
type 'Submodel-Equation'
ports
signal in Hin [4,4];
signal out Hout [4,4];
power in Pin [6,1];
power out Pout [6,1];
restrictions
causality constraint not_equal Pin Pout;
end;
icon bg bottom
figures
rectangle 776 464 840 544 color 0 fill 8454041;
text 'name' 808 488 color 0 'Clear Sans' 16;
terminals
Hin 776 528 fixed;
Hout 840 528 fixed;
Pin 840 480 fixed;
Pout 776 480 fixed;
end;
implementation eq
parameters
real offset[3]= [0; 0.025; 0]; //coordinates of joint_1
variables
real Hab[4,4];
real AdHab[6,6];
equations
Hab = homogeneous(eye(3),offset);
AdHab = Adjoint(eye(3),offset);
Hout = Hin * Hab;
Pout.e = transpose(AdHab) * Pin.e;
Pin.f = AdHab * Pout.f;
implementation_end;
Link3 968 504
description '
4.8
Z:\home\wouter\Documents\20-sim\library\Bond Graph\MR\link-v2.emx
1
False
2020-7-16 17:44:32
False
';
type 'Submodel-Equation'
ports
signal in Hin [4,4];
signal out Hout [4,4];
power in Pin [6,1];
power out Pout [6,1];
restrictions
causality constraint not_equal Pin Pout;
end;
icon bg bottom
figures
rectangle 936 464 1000 544 color 0 fill 8454041;
text 'name' 968 488 color 0 'Clear Sans' 16;
terminals
Hin 936 528 fixed;
Hout 1000 528 fixed;
Pin 1000 480 fixed;
Pout 936 480 fixed;
end;
implementation eq
parameters
real offset[3]= [0; 0.025; 0]; //coordinates of joint_1
variables
real Hab[4,4];
real AdHab[6,6];
equations
Hab = homogeneous(eye(3),offset);
AdHab = Adjoint(eye(3),offset);
Hout = Hin * Hab;
Pout.e = transpose(AdHab) * Pin.e;
Pin.f = AdHab * Pout.f;
implementation_end;
new_joint1 672 592
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type 'Submodel-Equation'
ports
signal in input [4,4];
signal out output;
end;
implementation eq
variables
real position[3];
real rotation[3];
real R[3,3];
equations
// start typing here
position = input[1:3,4];
rotation = [input[3,2];input[1,3];input[2,1]];
R = input[1:3,1:3];implementation_end;
new_joint2 1064 528
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type 'Submodel-Equation'
ports
signal in input [4,4];
signal out output;
end;
implementation eq
variables
real position[3];
real rotation[3];
real R[3,3];
equations
// start typing here
position = input[1:3,4];
rotation = [input[3,2];input[1,3];input[2,1]];
R = input[1:3,1:3];implementation_end;
OneJunction 232 256
description '4.01False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 232 256 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
OneJunction1 304 480
description '4.01False
Bond Graph\OneJunction.emx
2007-9-27 9:51:18
';
knot OneJunction
ports
power knot duplicatable none p [6,1];
signal knot out flow [6,1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 304 480 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
ori_joint1 440 408
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type 'Submodel-Equation'
ports
signal in input [4,4];
signal out output;
end;
implementation eq
variables
real position[3];
real rotation[3];
real R[3,3];
equations
// start typing here
position = input[1:3,4];
rotation = [input[3,2];input[1,3];input[2,1]];
R = input[1:3,1:3];
implementation_end;
ori_joint2 760 336
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type 'Submodel-Equation'
ports
signal in input [4,4];
signal out output;
end;
implementation eq
variables
real position[3];
real rotation[3];
real R[3,3];
equations
// start typing here
position = input[1:3,4];
rotation = [input[3,2];input[1,3];input[2,1]];
R = input[1:3,1:3];implementation_end;
Sf 160 256
description '4.01False
Bond Graph\3D\Sf-3.emx
2007-9-25 12:11:58
';
type 'Sf-3'
ports
power out p [6,1];
restrictions
causality fixed in p;
end;
icon bg bottom
figures
text 'Sf' 160 256 color 0 18 bold;
end;
implementation eq
parameters
real flow[6,1] = 0;
variables
real effort [6];
equations
p.f = flow;
effort = p.e;
implementation_end;
Sf1 256 480
description '4.01False
Bond Graph\3D\Sf-3.emx
2007-9-25 12:11:58
';
type 'Sf-3'
ports
power out p [6,1];
restrictions
causality fixed in p;
end;
icon bg bottom
figures
text 'Sf' 256 480 color 0 18 bold;
end;
implementation eq
parameters
real flow[6,1] = 0;
variables
real effort [6];
equations
p.f = flow;
effort = p.e;
implementation_end;
Splitter1 296 96
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [1];
signal knot in input [1];
end;
icon bg ellipse
figures
ellipse 292.8 92.8 299.2 99.2 color -1 fill 0;
ellipse 291.7 91.7 300.3 100.3 color -1;
terminals
input 296 96 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter2 232 336
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 228.8 332.8 235.2 339.2 color -1 fill 0;
ellipse 227.7 331.7 236.3 340.3 color -1;
terminals
input 232 336 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter3 480 640
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [1];
signal knot in input [1];
end;
icon bg ellipse
figures
ellipse 476.8 636.8 483.2 643.2 color -1 fill 0;
ellipse 475.7 635.7 484.3 644.3 color -1;
terminals
input 480 640 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter4 232 528
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 228.8 524.8 235.2 531.2 color -1 fill 0;
ellipse 227.7 523.7 236.3 532.3 color -1;
terminals
input 232 528 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter5 440 336
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 436.8 332.8 443.2 339.2 color -1 fill 0;
ellipse 435.7 331.7 444.3 340.3 color -1;
terminals
input 440 336 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter6 672 528
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [4,4];
signal knot in input [4,4];
end;
icon bg ellipse
figures
ellipse 668.8 524.8 675.2 531.2 color -1 fill 0;
ellipse 667.7 523.7 676.3 532.3 color -1;
terminals
input 672 528 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Submodel1 296 144
description '
4.8
1
';
type Submodel
ports
signal in input;
power out p2;
end;
implementation bg
submodels
Gain1 552 88
description '4.01False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
';
type Gain
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 536.1 72 567.9 104 color 0 fill 15132390;
text 'K' 552 88 color 16711680 16 bold;
end;
implementation eq
parameters
real K = 12.0; // gain
equations
output = K * input;
implementation_end;
GY 624 184
description '
4.2
1
False
Bond Graph\GY.emx
2011-11-29 15:53:45
';
type GY
ports
power in p1;
power out p2;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'GY' 624 184 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.127;
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MSe 624 88
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
power out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 624 88 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
plug input 424 88;
plug p2 624 220;
OneJunction2 624 136
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 624 136 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
R 664 136
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 664 136 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.08;
equations
p.e = r * p.f;
implementation_end;
SignalLimiter2 488 88
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 472 72 504 104 color 0 fill 15132390;
line 487.9 76.5 487.9 101 color 0 fill 15132390;
line 475 88.2 500.7 88.2 color 0 fill 15132390;
spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2;
spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2;
spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 1;
real minimum = -1;
equations
output = limit (input, minimum, maximum);
implementation_end;
end;
connections
Gain1\output -> MSe\effort;
GY\p2 => p2;
input -> SignalLimiter2\input;
MSe\p => OneJunction2\p;
OneJunction2\p => GY\p1;
R\p <= OneJunction2\p;
SignalLimiter2\output -> Gain1\input;
end;
implementation_end;
Submodel2 488 96
description '
4.8
1
';
type Submodel
ports
signal in input;
power out p2;
end;
implementation bg
submodels
Gain1 552 88
description '4.01False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
';
type Gain
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 536.1 72 567.9 104 color 0 fill 15132390;
text 'K' 552 88 color 16711680 16 bold;
end;
implementation eq
parameters
real K = 12.0; // gain
equations
output = K * input;
implementation_end;
GY 624 184
description '
4.2
1
False
Bond Graph\GY.emx
2011-11-29 15:53:45
';
type GY
ports
power in p1;
power out p2;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'GY' 624 184 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.127;
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MSe 624 88
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
power out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 624 88 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
plug input 424 88;
plug p2 624 220;
OneJunction2 624 136
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 624 136 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
R 664 136
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 664 136 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.08;
equations
p.e = r * p.f;
implementation_end;
SignalLimiter2 488 88
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 472 72 504 104 color 0 fill 15132390;
line 487.9 76.5 487.9 101 color 0 fill 15132390;
line 475 88.2 500.7 88.2 color 0 fill 15132390;
spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2;
spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2;
spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 1;
real minimum = -1;
equations
output = limit (input, minimum, maximum);
implementation_end;
end;
connections
Gain1\output -> MSe\effort;
GY\p2 => p2;
input -> SignalLimiter2\input;
MSe\p => OneJunction2\p;
OneJunction2\p => GY\p1;
R\p <= OneJunction2\p;
SignalLimiter2\output -> Gain1\input;
end;
implementation_end;
Submodel4 384 640
description '
4.8
1
';
type Submodel
ports
signal in input;
power out p2;
end;
implementation bg
submodels
Gain1 552 88
description '4.01False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
';
type Gain
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 536.1 72 567.9 104 color 0 fill 15132390;
text 'K' 552 88 color 16711680 16 bold;
end;
implementation eq
parameters
real K = 12.0; // gain
equations
output = K * input;
implementation_end;
GY 624 184
description '
4.2
1
False
Bond Graph\GY.emx
2011-11-29 15:53:45
';
type GY
ports
power in p1;
power out p2;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'GY' 624 184 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.127;
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MSe 624 88
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
power out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 624 88 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
plug input 424 88;
plug p2 624 220;
OneJunction2 624 136
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 624 136 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
R 664 136
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 664 136 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.08;
equations
p.e = r * p.f;
implementation_end;
SignalLimiter2 488 88
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 472 72 504 104 color 0 fill 15132390;
line 487.9 76.5 487.9 101 color 0 fill 15132390;
line 475 88.2 500.7 88.2 color 0 fill 15132390;
spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2;
spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2;
spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 1;
real minimum = -1;
equations
output = limit (input, minimum, maximum);
implementation_end;
end;
connections
Gain1\output -> MSe\effort;
GY\p2 => p2;
input -> SignalLimiter2\input;
MSe\p => OneJunction2\p;
OneJunction2\p => GY\p1;
R\p <= OneJunction2\p;
SignalLimiter2\output -> Gain1\input;
end;
implementation_end;
Submodel5 728 640
description '
4.8
1
';
type Submodel
ports
signal in input;
power out p2;
end;
implementation bg
submodels
Gain1 552 88
description '4.01False
Signal\Block Diagram\Gain.emx
2007-9-26 12:15:12
';
type Gain
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 536.1 72 567.9 104 color 0 fill 15132390;
text 'K' 552 88 color 16711680 16 bold;
end;
implementation eq
parameters
real K = 12.0; // gain
equations
output = K * input;
implementation_end;
GY 624 184
description '
4.2
1
False
Bond Graph\GY.emx
2011-11-29 15:53:45
';
type GY
ports
power in p1;
power out p2;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'GY' 624 184 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.127;
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MSe 624 88
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
power out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 624 88 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
plug input 424 88;
plug p2 624 220;
OneJunction2 624 136
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
power knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 624 136 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
R 664 136
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 664 136 color 0 18 bold;
end;
implementation eq
parameters
real r = 0.08;
equations
p.e = r * p.f;
implementation_end;
SignalLimiter2 488 88
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 472 72 504 104 color 0 fill 15132390;
line 487.9 76.5 487.9 101 color 0 fill 15132390;
line 475 88.2 500.7 88.2 color 0 fill 15132390;
spline 481.9 95.1 493.9 81.4 color 16711680 fill 15132390 width 2;
spline 493.3 82.2 501.9 81.8 color 16711680 fill 15132390 width 2;
spline 475 95.6 481.9 95.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 1;
real minimum = -1;
equations
output = limit (input, minimum, maximum);
implementation_end;
end;
connections
Gain1\output -> MSe\effort;
GY\p2 => p2;
input -> SignalLimiter2\input;
MSe\p => OneJunction2\p;
OneJunction2\p => GY\p1;
R\p <= OneJunction2\p;
SignalLimiter2\output -> Gain1\input;
end;
implementation_end;
Wtip0 760 256
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'Se' 760 256 color 0 18 bold;
end;
implementation eq
parameters
real effort = 0.0;
variables
real flow[6];
equations
p.e = effort;
flow = p.f;
implementation_end;
Wtip1 1064 480
description '
4.0
1
False
Bond Graph\Se.emx
2007-9-25 12:3:26
True
';
type Se
ports
power out p [6,1];
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'Se' 1064 480 color 0 18 bold;
end;
implementation eq
parameters
real effort = 0.0;
variables
real flow[6];
equations
p.e = effort;
flow = p.f;
implementation_end;
end;
connections
Base\Hout -> Splitter5\input;
Base\p => JointBase2\p2;
Base1\Hout -> ori_joint2\input;
Base1\p => JointBase1\p2;
Base2\Hout -> Link3\Hin;
Base2\p1 <= Link3\Pout;
Base3\Hout -> Link1\Hin;
Base3\p1 <= Link1\Pout;
Constant\output -> Splitter2\input;
Constant1\output -> Splitter1\input;
Constant2\output -> Splitter3\input;
Joint\Hout -> Link\Hin;
Joint\p2 <= Link\Pout;
Joint1\Hout -> Link2\Hin;
Joint1\p2 <= Link2\Pout;
JointBase1\Hout -> Base1\Hin;
JointBase1\p => Base\p1;
JointBase2\Hout -> Base\Hin;
JointBase2\p => OneJunction\p;
Link\Hout -> Base3\Hin;
Link\Pin <= Base3\p;
Link1\Hout -> Splitter6\input;
Link1\Pin <= Joint1\p;
Link2\Hout -> Base2\Hin;
Link2\Pin <= Base2\p;
Link3\Hout -> new_joint2\input;
Link3\Pin <= Wtip1\p;
OneJunction\p <= Sf\p;
OneJunction1\p <= Joint\p;
OneJunction1\p <= Sf1\p;
Splitter1\output -> Submodel1\input;
Splitter1\output -> Submodel2\input;
Splitter2\output -> JointBase2\Hin;
Splitter2\output -> Splitter4\input;
Splitter3\output -> Submodel4\input;
Splitter3\output -> Submodel5\input;
Splitter4\output -> Joint\Hin;
Splitter5\output -> JointBase1\Hin;
Splitter5\output -> ori_joint1\input;
Splitter6\output -> Joint1\Hin;
Splitter6\output -> new_joint1\input;
Submodel1\p2 => JointBase2\p1;
Submodel2\p2 => JointBase1\p1;
Submodel4\p2 => Joint\p1;
Submodel5\p2 => Joint1\p1;
Wtip0\p => Base1\p1;
end;
implementation_end;
]]>
Experiment 1
4.8
Base1\InertialTensor\state_initial
6
1
0 0 0 0 0 0
Base2\InertialTensor\state_initial
6
1
0 0 0 0 0 0
Base3\InertialTensor\state_initial
6
1
0 0 0 0 0 0
Base\InertialTensor\state_initial
6
1
0 0 0 0 0 0
Joint1\JointType\uTbai\state_initial
6
1
0 0 0 0 0 0
Joint\JointType\uTbai\state_initial
6
1
0 0 0 0 0 0
new_state1_initial
0
new_state10_initial
0
new_state2_initial
0
new_state3_initial
0
new_state4_initial
0
new_state5_initial
0
new_state6_initial
0
new_state7_initial
0
new_state8_initial
0
new_state9_initial
0
Submodel4\R\p.f_initial
0
Submodel5\R\p.f_initial
0
time
ori_joint1\position[1]
ori_joint1\position[2]
ori_joint1\position[3]
new_joint1\position[1]
new_joint1\position[2]
new_joint1\position[3]
ori_joint2\position[1]
ori_joint2\position[2]
ori_joint2\position[3]
ori_joint1\R[1,3]
ori_joint1\R[2,3]
ori_joint1\R[3,3]
ori_joint1\R[1,2]
ori_joint1\R[2,2]
ori_joint1\R[3,2]
ori_joint2\R[1,3]
ori_joint2\R[2,3]
ori_joint2\R[3,3]
ori_joint2\R[1,2]
ori_joint2\R[2,2]
ori_joint2\R[3,2]
new_joint2\position[1]
new_joint2\position[2]
new_joint2\position[3]
GraphPlot
1
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
model
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
true
false
0.0
1.424742322143329
true
3
-0.1
0.1
true
1
-0.1
0.1
true
1
-0.1
0.1
true
1
-0.1
0.1
true
1
-0.1
0.1
true
1
-0.1
0.1
true
1
3355111
1
3355111
0
true
1
1
1
true
true
time
true
ori_joint1\position[1]
6076255
1
6076255
0
true
1
1
1
true
true
time
true
ori_joint1\position[2]
12553035
1
12553035
0
true
1
1
1
true
true
time
true
ori_joint1\position[3]
15086320
1
15086320
0
true
1
1
1
true
true
time
true
new_joint1\position[1]
15790150
1
15790150
0
true
1
1
1
true
true
time
true
new_joint1\position[2]
1696255
1
1696255
0
true
1
1
1
true
true
time
true
new_joint1\position[3]
true
0
16777215
D3DPlot
2
false
16777215
true
3D Animation
137
true
false
4294967295
Gradients\BlueWhite.png
true
1.0
1.0
1
1
1
true
Reference Frame
Bryant
false
false
false
false
false
false
1
1
1
false
Default Lights and Cameras
Bryant
false
false
false
false
false
false
false
Ambient
1
1
Direct3D
false
false
false
false
false
false
0
0.3
0.3
0.3
1
1
1
true
0.3
0.3
0.3
1
1
1
true
true
false
false
false
Parallel
-3
5
3
0.457495710997814
-0.762492851663023
-0.457495710997814
0.235379601434674
-0.392299335724456
0.889211827642101
Direct3D
false
false
false
false
false
false
3
0.5
0.5
0.5
1
1
1
true
1.0
0.0
0.0
0.5
0.5
0.5
1
1
1
true
0.5
0.5
0.5
1
1
1
true
false
true
true
false
Spot Light 1
-3
-5
1
0.50709255283711
0.845154254728517
-0.169030850945703
0.0869656553478673
0.144942758913112
0.985610760609162
Direct3D
false
false
false
false
false
false
2
0.5
0.5
0.5
1
1
1
true
1.0
0.05
0.05
1.0471975511965976
1.0471975511965976
0.0
0.5
0.5
0.5
1
1
1
true
0.5
0.5
0.5
1
1
1
true
false
true
true
false
Spot Light 2
2
-3
-1
-0.534522483824849
0.801783725737273
0.267261241912424
0.14824986333222
-0.22237479499833
0.963624111659432
Direct3D
false
false
false
false
false
false
2
1
1
1
1
1
1
true
1.0
0.05
0.05
1.5707963267948966
1.5707963267948966
0.0
1
1
1
1
1
1
true
0.5
0.5
0.5
1
1
1
true
false
true
true
false
Camera Looking at Origin
5.66443922345846
-1.87918322175823
8.35361970698833
-0.551742297648959
0.183041043883461
-0.813680780920319
-0.77229119625168
0.256208355506313
0.581311953051802
Direct3D
false
false
false
false
false
false
0.01
100.0
true
0.003926990816987242
45.0
-10.0
10.0
10.0
-10.0
true
true
1
true
true
true
false
Front(XY)-Camera
10
-1
1
Direct3D
false
false
false
false
false
false
0.01
100.0
true
9.999999999999998
45.0
-9.999999999999998
9.999999999999998
9.999999999999998
-9.999999999999998
true
true
1
true
false
false
false
Side(YZ)-Camera
10
-1
1
Direct3D
false
false
false
false
false
false
0.01
100.0
true
9.999999999999998
45.0
-9.999999999999998
9.999999999999998
9.999999999999998
-9.999999999999998
true
true
1
true
false
false
false
Top(XZ)-Camera
10
-1
1
Direct3D
false
false
false
false
false
false
0.01
100.0
true
9.999999999999998
45.0
-9.999999999999998
9.999999999999998
9.999999999999998
-9.999999999999998
true
true
1
true
false
false
10
10
10
false
Scenery
Bryant
false
false
false
false
false
false
1
1
1
false
Reference Frame
Bryant
false
false
false
false
false
false
5.0
ori_joint1\position[1]
-0.05242625720312162
ori_joint1\position[2]
0.03842509018430717
ori_joint1\position[3]
0.0
15
true
true
0.1
15
true
0.1
0.1
0.0649999976158142
true
1
1
1
1.0
1
1
1
true
0.5
0.5
0.5
15
false
false
Line
-0.806557803124948
0.591155233604726
1
Direct3D
false
false
false
false
false
false
1.0
ori_joint2\position[1]
-0.10031667574147025
ori_joint2\position[2]
0.024054710501717216
ori_joint2\position[3]
0.0
15
true
true
0.1
15
true
0.1
0.1
0.0500000007450581
true
1
1
1
1.0
1
1
1
true
0.5
0.5
0.5
15
false
false
Line
ori_joint1\position[1]
-0.05242625720312162
ori_joint1\position[2]
0.03842509018430717
ori_joint1\position[3]
0.0
-0.957808370766973
-0.287407593651799
1
Direct3D
false
false
false
false
false
false
1
1
1
false
Reference Frame
ori_joint1\position[1]
-0.05242625720312162
ori_joint1\position[2]
0.03842509018430717
ori_joint1\position[3]
0.0
ori_joint1\R[1,3]
0.0
ori_joint1\R[2,3]
0.0
ori_joint1\R[3,3]
1.0
ori_joint1\R[1,2]
-0.806557803124948
ori_joint1\R[2,2]
0.5911552336047257
ori_joint1\R[3,2]
0.0
Matrix
false
false
false
false
false
false
1
1
1
false
Reference Frame
ori_joint2\position[1]
-0.10031667574147025
ori_joint2\position[2]
0.024054710501717216
ori_joint2\position[3]
0.0
ori_joint2\R[1,3]
0.0
ori_joint2\R[2,3]
0.0
ori_joint2\R[3,3]
1.0
ori_joint2\R[1,2]
-0.9578083707669727
ori_joint2\R[2,2]
-0.2874075936517991
ori_joint2\R[3,2]
0.0
Matrix
false
false
false
false
false
false
GraphPlot
3
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
model(1)
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
true
false
0.0
1.424742322143329
true
3
-0.25
0.25
true
2
-0.25
0.25
true
2
-0.25
0.25
true
2
-0.25
0.25
true
2
-0.25
0.25
true
2
-0.25
0.25
true
2
3355111
1
3355111
0
true
1
1
1
true
true
time
true
ori_joint2\position[1]
6076255
1
6076255
0
true
1
1
1
true
true
time
true
ori_joint2\position[2]
12553035
1
12553035
0
true
1
1
1
true
true
time
true
ori_joint2\position[3]
15086320
1
15086320
0
true
1
1
1
true
true
time
true
new_joint2\position[1]
15790150
1
15790150
0
true
1
1
1
true
true
time
true
new_joint2\position[2]
1696255
1
1696255
0
true
1
1
1
true
true
time
true
new_joint2\position[3]
true
0
16777215
1
true
Window 1
0
1
3
Base
2
true
Window 2
0
2
Base
0.200521 0.191667 0.840104 0.771296
0.0859375 0.0712963 0.84375 0.833333
0.0
10.0
false
true
false
false
0.1
1.0e-6
1.0e-7
false
true
Euler
0.01
false
BackwardEuler
1.0e-5
1.0e-5
1.0e-5
1.0e-5
0.01
1.0
AdamsBashforth
0.01
false
RungeKutta2
0.01
false
RungeKutta4
0.01
false
RungeKutta8
false
0.0
false
0.0
1.0e-6
1.0e-6
0.9
0.33
6.0
0.0
false
100000
false
1000
RungeKuttaFehlberg
false
0.0
false
0.0
1.0e-6
1.0e-6
VodeAdams
false
0.0
false
0.0
1.0e-6
1.0e-6
true
true
BDFMethod
1.0e-5
1.0e-5
1.0e-5
1.0e-5
false
0.0
false
0.0
MeBDFiMethod
1.0e-5
1.0e-5
1.0e-5
1.0e-5
false
0.0
false
0.0
7
10
false
true
true
false
true
0
0.0
true
MultipleRun
true
UseEndValue
0.001
BroydonFletcherGoldfarbShanno
true
true
true
true
false
1.0