4.8
0
False
Motor\stepper_103H5208.emx
2020-7-22 15:08:02
';
type Mainmodel
end;
implementation bg
submodels
C 976 392
description '
4.2
1
False
Bond Graph\C.emx
2011-11-29 15:58:35
';
type C
ports
power in p;
signal out state;
restrictions
causality preferred out p;
end;
icon bg bottom
figures
text 'C' 976 392 color 0 18 bold;
end;
implementation eq
parameters
real c = 0.00001;
equations
state = int(p.f);
p.e = state / c;
implementation_end;
Cycloid 184 224
description '4.01False
Signal\Sources\SignalGenerator-Cycloid.emx
2007-9-27 16:0:53
';
type 'SignalGenerator-Cycloid'
ports
signal out output;
end;
icon bg bottom
figures
rectangle 168 208 200 240 color 0 fill 15132390;
line 170.9 232 197.1 232 color 0;
line 173.1 216 173.1 234.2 color 0;
spline 173 232 177.8 230.1 184.2 220.8 196.3 218.7 color 16711680 fill 15132390;
line 193.8 232 193.8 218.7 color 0 fill 15132390 dotted;
end;
implementation eq
parameters
real amplitude = 3.1415 {none};
real start_time = 1.0 {s};
real stop_time = 1.3{s};
variables
real hidden tDelta, cycl;
boolean hidden change;
equations
"calculate at least at the start and stop time"
change = timeevent (start_time) or timeevent (stop_time);
"calculate the cycliod signal"
tDelta = 2 * pi * (time - start_time) / (stop_time - start_time);
cycl = amplitude * (tDelta - sin (tDelta)) / twopi;
output = if tDelta < 0.0 then
0
else
if tDelta >= 0.0 and tDelta <= twopi then
cycl
else
amplitude
end
end;
implementation_end;
I2 1024 272
description '
4.2
1
False
Bond Graph\I.emx
2011-11-29 15:55:55
';
type I
ports
power in p;
signal out state;
restrictions
causality preferred in p;
end;
icon bg bottom
figures
text 'I' 1024 272 color 0 18 bold;
end;
implementation eq
parameters
real i = 8e-5 {kg.m2};
equations
state = int(p.e);
p.f = state / i;
implementation_end;
Integrate 656 336
description '
4.3
1
False
Signal\Block Diagram\Integrate.emx
2013-3-8 14:47:42
';
type Integrate
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 640 320 672 352 color 0 fill 15132390;
text '∫' 656 336.3 color 16711680 'Lucida Sans' 21 italic;
end;
implementation eq
parameters
real initial = 0; // initial value
equations
output = int (input, initial);
implementation_end;
Integrate1 720 336
description '
4.3
1
False
Signal\Block Diagram\Integrate.emx
2013-3-8 14:47:42
';
type Integrate
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
rectangle 704 320 736 352 color 0 fill 15132390;
text '∫' 720 336.3 color 16711680 'Lucida Sans' 21 italic;
end;
implementation eq
parameters
real initial = 0; // initial value
equations
output = int (input, initial);
implementation_end;
OneJunction 1024 336
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
rotation knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 1024 336 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
OneJunction1 936 392
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
rotation knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 936 392 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
PD 568 336
description '
4.0
1
False
Signal\Control\PID Control\Continuous\PD.emx
2008-1-17 10:49:7
';
type PD
ports
signal in error;
signal out output;
end;
icon bg bottom
figures
rectangle 552 320 584 352 color 0 fill 15132390;
text 'PD' 568.5 336.1 color 16711680 18 bold;
end;
implementation eq
parameters
real kp = 6 {}; // Proportional gain
real tauD = 7.5 {s}; // Derivative time constant: tauD > 0
real beta = 0.4 {}; // Tameness constant: 0 < beta << 1
real maximum = 100;
variables
real state, rate;
equations
rate = (kp * error - output) / (beta * tauD);
state = int (rate);
output = state + kp * error / beta;
implementation_end;
PD1 432 336
description '
4.0
1
False
Signal\Control\PID Control\Continuous\PD.emx
2008-1-17 10:49:7
';
type PD
ports
signal in error;
signal out output;
end;
icon bg bottom
figures
rectangle 416 320 448 352 color 0 fill 15132390;
text 'PD' 432.5 336.1 color 16711680 18 bold;
end;
implementation eq
parameters
real kp = 3 {}; // Proportional gain
real tauD = 50 {s}; // Derivative time constant: tauD > 0
real beta = 0.4 {}; // Tameness constant: 0 < beta << 1
real maximum = 25;
variables
real state, rate;
equations
rate = (kp * error - output) / (beta * tauD);
state = int (rate);
output = state + kp * error / beta;
implementation_end;
PlusMinus1 392 336
description '4.01False
Signal\Block Diagram\PlusMinus.emx
2007-9-27 10:15:13
';
knot PlusMinus
ports
signal knot duplicatable in plus [1];
signal knot duplicatable in minus [1];
signal knot out output [1];
end;
icon bg ellipse
figures
ellipse 384 328 400 344 color 0 fill 16777215;
end;
implementation eq
equations
output = sum (collect (plus)) - sum (collect (minus));
implementation_end;
PlusMinus2 528 336
description '4.01False
Signal\Block Diagram\PlusMinus.emx
2007-9-27 10:15:13
';
knot PlusMinus
ports
signal knot duplicatable in plus [1];
signal knot duplicatable in minus [1];
signal knot out output [1];
end;
icon bg ellipse
figures
ellipse 520 328 536 344 color 0 fill 16777215;
end;
implementation eq
equations
output = sum (collect (plus)) - sum (collect (minus));
implementation_end;
R 896 392
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 896 392 color 0 18 bold;
end;
implementation eq
parameters
real r = 100;
equations
p.e = r * p.f;
implementation_end;
SignalLimiter1 480 336
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 464 320 496 352 color 0 fill 15132390;
line 479.9 324.5 479.9 349 color 0 fill 15132390;
line 467 336.2 492.7 336.2 color 0 fill 15132390;
spline 473.9 343.1 485.9 329.4 color 16711680 fill 15132390 width 2;
spline 485.3 330.2 493.9 329.8 color 16711680 fill 15132390 width 2;
spline 467 343.6 473.9 343.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 25;
real minimum = -25;
equations
output = limit (input, minimum, maximum);
implementation_end;
SignalLimiter2 616 336
description '4.01False
Signal\Block Diagram Non-Linear\SignalLimiter-Limit.emx
2007-9-26 12:47:40
';
type 'SignalLimiter-Limit'
ports
signal in input;
signal out output;
end;
icon bg bottom
figures
group
rectangle 600 320 632 352 color 0 fill 15132390;
line 615.9 324.5 615.9 349 color 0 fill 15132390;
line 603 336.2 628.7 336.2 color 0 fill 15132390;
spline 609.9 343.1 621.9 329.4 color 16711680 fill 15132390 width 2;
spline 621.3 330.2 629.9 329.8 color 16711680 fill 15132390 width 2;
spline 603 343.6 609.9 343.1 color 16711680 fill 15132390 width 2;
end;
end;
implementation eq
parameters
real maximum = 100;
real minimum = -100;
equations
output = limit (input, minimum, maximum);
implementation_end;
Splitter2 304 336
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [1];
signal knot in input [1];
end;
icon bg ellipse
figures
ellipse 300.8 332.8 307.2 339.2 color -1 fill 0;
ellipse 299.7 331.7 308.3 340.3 color -1;
terminals
input 304 336 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter3 688 336
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [1];
signal knot in input [1];
end;
icon bg ellipse
figures
ellipse 684.8 332.8 691.2 339.2 color -1 fill 0;
ellipse 683.7 331.7 692.3 340.3 color -1;
terminals
input 688 336 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Splitter4 752 336
description '4.0
Signal\Block Diagram\Splitter.emx
2008-01-17 11:28:29
1
False
';
knot Splitter
ports
signal knot duplicatable out output [1];
signal knot in input [1];
end;
icon bg ellipse
figures
ellipse 748.8 332.8 755.2 339.2 color -1 fill 0;
ellipse 747.7 331.7 756.3 340.3 color -1;
terminals
input 752 336 fixed;
end;
implementation eq
equations
collect (output) = input;
implementation_end;
Square 216 336
description '
4.0
1
False
Signal\Sources\WaveGenerator-Square.emx
2009-3-5 16:05:33
';
type 'WaveGenerator-Square'
ports
signal out output;
end;
icon bg bottom
figures
rectangle 200.1 320 231.9 352 color 0 fill 15132390;
line 204.1 323.9 203.9 350.2 color 0 fill 0;
line 201.9 348.1 227.9 348.1 color 0 fill 0;
line 204.1 348.1 208 348.1 208 336 color 16711680 fill 0;
line 216 336 208 336 216 336 color 16711680 fill 0;
line 216 348.1 216 336 216 348.1 color 16711680 fill 0;
line 224 336 224 348.1 224 336 color 16711680 fill 0;
line 227.9 336.1 223.7 336.1 color 16711680 fill 0;
line 216 348.1 224 348.1 color 16711680 fill 0;
end;
implementation eq
parameters
real amplitude = 1.0; // amplitude of the wave
real omega = 0.1 {rad/s}; // angular frequency of the wave
variables
real hidden s, half;
boolean hidden change;
equations
"calculate at least 2 points per period
(just after the change in sign)"
half = pi / omega;
change = frequencyevent (half, 1e-14);
"calculate the square wave"
s = sign (sin (omega * time));
output = if( s == 0 ) then
amplitude
else
(amplitude / 2) * (s + 1)
end;
implementation_end;
Step 528 472
description '4.01False
Signal\Sources\SignalGenerator-Step.emx
2007-9-27 16:2:44
';
type 'SignalGenerator-Step'
ports
signal out output;
end;
icon bg bottom
figures
group
rectangle 512 456 544 488 color 0 fill 15132390;
line 521.6 468.8 538.6 468.8 color 16711680 width 2;
line 514.9 480 541.1 480 color 0;
line 517.1 480.1 521.7 480.1 521.7 468.7 color 16711680 width 2;
line 517.1 464 517.1 482.2 color 0;
end;
end;
implementation eq
parameters
real amplitude = 25;
real start_time = 1.0 {s};
variables
boolean hidden change;
equations
"calculate at least at the start time"
change = timeevent (start_time);
"calculate the step signal"
output = amplitude * step (start_time); implementation_end;
Submodel1 304 200
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type 'Submodel-Equation'
ports
signal in input;
signal out output;
end;
implementation eq
parameters
real angleStep = 1.8 {deg};
real C = 5 {none};
real D = 3 {none};
real omega_max = 27.5 {rad/s};
variables
real a_max {rad/s2};
real currentAngle {rad};
real omega {rad/s};
real acc {rad/s2};
initialequations
currentAngle = 0;
omega = 0;
equations
a_max = C * exp(D * abs(omega));
acc = limit(input - currentAngle, -a_max, a_max);
omega = limint(acc, -omega_max, omega_max);
currentAngle = int(omega);
output = currentAngle;
/*
parameters
real kp = 0.1 {}; // Proportional gain
real tauD = 2.0 {s}; // Derivative time constant: tauD > 0
real beta = 0.1 {}; // Tameness constant: 0 < beta << 1
variables
real state, rate;
equations
rate = (kp * error - output) / (beta * tauD);
state = int (rate);
output = state + kp * error / beta;*/
implementation_end;
Submodel3 832 336
description '4.81parameters
real I_phase = 3.4 {mH};
real R_phase = 2.9 {ohm};
real u_max = 3.4 {V};
real RotorInertia = 5.6e-6 {kg.m2};
real StepperMass = 0.29 {kg};
real angle_step = 1.8 {deg};
real n_phase = 2 {none};
real fluxLinkage = 0.0022 {Wb};
real detentTorque = 0.01 {N.m};
variables
real omega;
real p; // rotor division
initialequations
p = 2 * pi / (2 * n_phase * angle_step);
omega = 200;';
type Submodel
ports
signal in angle;
rotation out p;
end;
implementation bg
submodels
I 560 104
description '
4.2
1
False
Bond Graph\I.emx
2011-11-29 15:55:55
';
type I
ports
power in p;
signal out state;
restrictions
causality preferred in p;
end;
icon bg bottom
figures
text 'I' 560 104 color 0 18 bold;
end;
implementation eq
parameters
real global I_phase;
equations
state = int(p.e);
p.f = state / I_phase;
implementation_end;
I1 608 328
description '
4.2
1
False
Bond Graph\I.emx
2011-11-29 15:55:55
';
type I
ports
power in p;
signal out state;
restrictions
causality preferred in p;
end;
icon bg bottom
figures
text 'I' 608 328 color 0 18 bold;
end;
implementation eq
parameters
real global I_phase;
equations
state = int(p.e);
p.f = state / I_phase;
implementation_end;
I2 752 160
description '
4.2
1
False
Bond Graph\I.emx
2011-11-29 15:55:55
';
type I
ports
power in p;
signal out state;
restrictions
causality preferred in p;
end;
icon bg bottom
figures
text 'I' 752 160 color 0 18 bold;
end;
implementation eq
parameters
real i = 8e-5 {kg.m2};
real global RotorInertia;
equations
state = int(p.e);
p.f = state / (RotorInertia);
implementation_end;
MGY_a 656 160
description '
4.2
1
False
Bond Graph\MGY.emx
2011-11-29 16:03:53
';
type MGY
ports
power in p1;
power out p2;
signal in r;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'MGY' 656 160 color 0 18 bold;
end;
implementation eq
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MGY_b 656 272
description '
4.2
1
False
Bond Graph\MGY.emx
2011-11-29 16:03:53
';
type MGY
ports
power in p1;
power out p2;
signal in r;
restrictions
causality constraint equal p1 p2;
end;
icon bg bottom
figures
text 'MGY' 656 272 color 0 18 bold;
end;
implementation eq
equations
p1.e = r * p2.f;
p2.e = r * p1.f;
implementation_end;
MSe_a 512 160
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
electric out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 512 160 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
MSe_b 512 272
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
electric out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 512 272 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
plug angle 200 216;
plug p 1472 216;
OneJunction1 840 216
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
rotation knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 840 216 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
OneJunction2 584 160
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
electric knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 584 160 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
OneJunction3 584 272
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
electric knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 584 272 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
OneJunction4 752 216
description '
4.2
1
False
Bond Graph\OneJunction.emx
2011-11-29 16:17:51
';
knot OneJunction
ports
rotation knot duplicatable none p [1];
signal knot out flow [1];
restrictions
causality constraint one_out p;
end;
icon bg
figures
text '1' 752 216 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.e)) = 0;
equal (collect (p.f));
flow = first (p.f);
implementation_end;
R 608 104
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 608 104 color 0 18 bold;
end;
implementation eq
parameters
real global R_phase;
equations
p.e = R_phase * p.f;
implementation_end;
R1 560 328
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 560 328 color 0 18 bold;
end;
implementation eq
parameters
real global R_phase;
equations
p.e = R_phase * p.f;
implementation_end;
R2 824 264
description '
4.2
1
False
Bond Graph\R.emx
2011-11-29 16:35:37
';
type R
ports
power in p;
end;
icon bg bottom
figures
text 'R' 824 264 color 0 18 bold;
end;
implementation eq
parameters
real r = 1.0e-3;
equations
p.e = r * p.f;
implementation_end;
RotorAngle 656 216
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type Submodel
ports
signal out output_b;
signal out output_a;
signal in omega {rad/s} ;
signal out output_d;
end;
icon bg
figures
rectangle 616 200 696 232 color 0 fill 15132390;
text 'name' 656 216 color 0 'Clear Sans' 16;
end;
implementation eq
parameters
real global fluxLinkage;
real global detentTorque;
variables
real global p;
real angle {rad};
equations
angle = int(omega);
output_a = -p * fluxLinkage * sin(p * angle);
output_b = p * fluxLinkage * sin(p * angle - pi / 2);
output_d = detentTorque * sin(2 * p * angle);
implementation_end;
Se 752 272
description '
4.2
1
False
Bond Graph\MSe.emx
2011-11-29 16:12:33
';
type MSe
ports
power out p;
signal in effort;
restrictions
causality fixed out p;
end;
icon bg bottom
figures
text 'MSe' 752 272 color 0 18 bold;
end;
implementation eq
variables
real flow;
equations
p.e = effort;
flow = p.f;
implementation_end;
Submodel2 512 216
description '4.0
Template\Submodel-Equation.emx
1
False
2007-11-1 22:32:1
False
';
type Submodel
ports
signal in angle;
signal out a;
signal out b;
end;
icon bg
figures
rectangle 472 200 552 232 color 0 fill 15132390;
text 'name' 512 216 color 0 'Clear Sans' 16;
end;
implementation eq
parameters
real global u_max {V};
real global angle_step;
real max_a {m/s2};
variables
real current_angle;
real c,s;
real global p;
boolean hidden eventa, eventb;
equations
a = u_max * (cos (p*angle));
eventa = event(a);
b = u_max * -(sin (p*angle));
eventb = event(b);
current_angle = angle;
implementation_end;
end;
connections
angle -> Submodel2\angle;
I2\p <= OneJunction4\p;
MGY_a\p2 => OneJunction4\p;
MGY_b\p2 => OneJunction4\p;
MSe_b\p => OneJunction3\p;
OneJunction1\p => p;
OneJunction2\p <= MSe_a\p;
OneJunction2\p => I\p;
OneJunction2\p => MGY_a\p1;
OneJunction2\p => R\p;
OneJunction3\p => I1\p;
OneJunction3\p => MGY_b\p1;
OneJunction3\p => R1\p;
OneJunction4\flow -> RotorAngle\omega;
OneJunction4\p => OneJunction1\p;
OneJunction4\p => R2\p;
RotorAngle\output_a -> MGY_a\r;
RotorAngle\output_b -> MGY_b\r;
RotorAngle\output_d -> Se\effort;
Se\p => OneJunction4\p;
Submodel2\a -> MSe_a\effort;
Submodel2\b -> MSe_b\effort;
end;
implementation_end;
ZeroJunction1 936 336
description '
4.2
1
False
Bond Graph\ZeroJunction.emx
2011-11-29 16:45:16
';
knot ZeroJunction
ports
rotation knot duplicatable none p [1];
signal knot out effort [1];
restrictions
causality constraint one_in p;
end;
icon bg
figures
text '0' 936 336 color 0 18 bold;
end;
implementation eq
equations
sum (direct (p.f)) = 0;
equal (collect (p.e));
effort = first (p.e);
implementation_end;
end;
connections
C\p <= OneJunction1\p;
Integrate\output -> Splitter3\input;
Integrate1\output -> Splitter4\input;
OneJunction\p => I2\p;
OneJunction1\p => R\p;
PD\output -> SignalLimiter2\input;
PD1\output -> SignalLimiter1\input;
PlusMinus1\output -> PD1\error;
PlusMinus2\output -> PD\error;
SignalLimiter1\output -> PlusMinus2\plus;
SignalLimiter2\output -> Integrate\input;
Splitter2\output -> PlusMinus1\plus;
Splitter2\output -> Submodel1\input;
Splitter3\output -> Integrate1\input;
Splitter3\output -> PlusMinus2\minus 688 288 528 288;
Splitter4\output -> PlusMinus1\minus 752 384 392 384;
Splitter4\output -> Submodel3\angle;
Square\output -> Splitter2\input;
Submodel3\p => ZeroJunction1\p;
ZeroJunction1\p => OneJunction\p;
end;
implementation_end;
]]>
Experiment 1
4.8
Submodel3\Submodel2\max_a
m/s2
0
C\state_initial
0
I2\state_initial
0
PD1\state_initial
0
PD\state_initial
0
Submodel1\currentAngle_initial
rad
0
Submodel1\omega_initial
0
Submodel3\I1\state_initial
0
Submodel3\I\state_initial
0
Submodel3\RotorAngle\angle_initial
rad
0
time
Submodel3\I2\p.e
Submodel3\I2\p.f
Submodel3\RotorAngle\angle
Submodel3\MSe_a\effort
Submodel3\MSe_b\effort
Submodel3\Submodel2\a
Submodel3\Submodel2\b
Integrate\input
Integrate\output
Integrate1\output
Square\output
PD\error
PD1\error
GraphPlot
1
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
model
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
false
false
0.0
1.8
true
3
-0.005
0.005
true
2
-2.0
8.0
true
2
3355111
1
3355111
0
true
1
1
1
true
true
time
true
Submodel3\I2\p.e
6076255
1
6076255
0
true
1
1
1
true
true
time
true
Submodel3\I2\p.f
true
0
16777215
GraphPlot
2
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
model(2)
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
true
false
0.0
1.8
true
3
-0.39999999999999986
1.6
true
2
-1.5
3.5
true
2
3355111
1
3355111
0
true
1
1
1
true
true
time
true
Submodel3\RotorAngle\angle
6076255
1
6076255
0
true
1
1
1
true
true
time
true
Square\output
true
0
16777215
GraphPlot
3
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
model(1)
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
true
false
0.0
1.8
true
3
-60.0
140.0
true
1
-400.0
600.0
true
1
-400.0
600.0
true
1
-400.0
600.0
true
1
-400.0
600.0
true
1
3355111
1
3355111
0
true
1
1
1
true
true
time
true
Integrate\input
6076255
1
6076255
0
true
1
1
1
true
true
time
true
Integrate\output
12553035
1
12553035
0
true
1
1
1
true
true
time
true
Integrate1\output
15086320
1
15086320
0
true
1
1
1
true
true
time
true
PD\error
15790150
1
15790150
0
true
1
1
1
true
true
time
true
PD1\error
true
0
16777215
GraphPlot
4
false
16777215
true
true
15780518
12624260
0
10
10
10
false
16777215
true
1
Window 2
true
Arial
12
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
Arial
10
34
400
0
0
0
0
Arial
12
34
400
0
0
0
0
true
true
false
0.0
1.8
true
3
-5.0
5.0
true
2
-5.0
5.0
true
2
-5.0
5.0
true
2
-5.0
5.0
true
2
3355111
1
3355111
0
true
1
1
1
true
true
time
true
Submodel3\Submodel2\a
6076255
1
6076255
0
true
1
1
1
true
true
time
true
Submodel3\MSe_a\effort
12553035
1
12553035
0
true
1
1
1
true
true
time
true
Submodel3\MSe_b\effort
15086320
1
15086320
0
true
1
1
1
true
true
time
true
Submodel3\Submodel2\b
true
0
16777215
1
true
Window 1
0
1
2
3
Base
2
false
Window 2
2
4
Base
0.0260417 0.025 0.908854 0.872222
0.172917 0.158333 0.841667 0.919444
0.0
1.8
false
false
false
false
0.1
1.0e-6
1.0e-7
false
true
Euler
0.01
false
BackwardEuler
1.0e-5
1.0e-5
1.0e-5
1.0e-5
0.01
1.0
AdamsBashforth
0.01
false
RungeKutta2
0.01
false
RungeKutta4
1.0e-4
false
RungeKutta8
false
0.0
false
0.0
1.0e-6
1.0e-6
0.9
0.33
6.0
0.0
false
100000
false
1000
RungeKuttaFehlberg
false
0.0
false
0.0
1.0e-6
1.0e-6
VodeAdams
false
0.0
false
0.0
1.0e-6
1.0e-6
false
true
BDFMethod
1.0e-5
1.0e-5
1.0e-5
1.0e-5
false
0.0
false
0.0
MeBDFiMethod
1.0e-5
1.0e-5
1.0e-5
1.0e-5
false
0.0
false
0.0
8
20
false
false
true
false
false
1
0.0
false
Optimization
true
Submodel3\RotorAngle\angle
Square\output
UseIntegralAbsolute
0.001
BroydonFletcherGoldfarbShanno
PD1\kp
1.0
50.0
Linear
Uniform
15.0
3.75
1.0
10.0
PD1\tauD
1.0
50.0
Linear
Uniform
6.0
1.5
1.0
10.0
true
true
true
true
false
1.0